Author
Abstract
Multi beam forward looking sonar plays an important role in underwater detection. However, due to the complex underwater environment, unclear features, and susceptibility to noise interference, most forward looking sonar systems have poor recognition performance. The research on MFLS for underwater target detection faces some challenges. Therefore, this study proposes innovative improvements to the YOLOv5 algorithm to address the above issues. On the basis of maintaining the original YOLOv5 architecture, this improved model introduces transfer learning technology to overcome the limitation of scarce sonar image data. At the same time, by incorporating the concept of coordinate convolution, the improved model can extract features with rich positional information, significantly enhancing the model’s detection ability for small underwater targets. Furthermore, in order to solve the problem of feature extraction in forward looking sonar images, this study integrates attention mechanisms. This mechanism expands the receptive field of the model and optimizes the feature learning process by highlighting key details while suppressing irrelevant information. These improvements not only enhance the recognition accuracy of the model for sonar images, but also enhance its applicability and generalization performance in different underwater environments. In response to the common problem of uneven training sample quality in forward looking sonar imaging technology, this study made a key improvement to the classic YOLOv5 algorithm. By adjusting the bounding box loss function of YOLOv5, the model’s over sensitivity to low-quality samples was reduced, thereby reducing the punishment on these samples. After a series of comparative experiments, the newly proposed CCW-YOLOv5 algorithm has achieved detection accuracy in object detection mAP@0.5 Reached 85.3%, and the fastest inference speed tested on the local machine was 54 FPS, showing significant improvement and performance improvement compared to existing advanced algorithms.
Suggested Citation
Yan Sun & Bo Yin, 2024.
"CCW-YOLOv5: A forward-looking sonar target method based on coordinate convolution and modified boundary frame loss,"
PLOS ONE, Public Library of Science, vol. 19(6), pages 1-18, June.
Handle:
RePEc:plo:pone00:0300976
DOI: 10.1371/journal.pone.0300976
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300976. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.