Author
Listed:
- Mohammed Shalaby
- Mohamed Farouk
- Hatem A Khater
Abstract
Numerous classification and regression problems have extensively used Support Vector Machines (SVMs). However, the SVM approach is less practical for large datasets because of its processing cost. This is primarily due to the requirement of optimizing a quadratic programming problem to determine the decision boundary during training. As a result, methods for selecting data instances that have a better likelihood of being chosen as support vectors by the SVM algorithm have been developed to help minimize the bulk of training data. This paper presents a density-based method, called Density-based Border Identification (DBI), in addition to four different variations of the method, for the lessening of the SVM training data through the extraction of a layer of border instances. For higher-dimensional datasets, the extraction is performed on lower-dimensional embeddings obtained by Uniform Manifold Approximation and Projection (UMAP), and the resulting subset can be repetitively used for SVM training in higher dimensions. Experimental findings on different datasets, such as Banana, USPS, and Adult9a, have shown that the best-performing variations of the proposed method effectively reduced the size of the training data and achieved acceptable training and prediction speedups while maintaining an adequate classification accuracy compared to training on the original dataset. These results, as well as comparisons to a selection of related state-of-the-art methods from the literature, such as Border Point extraction based on Locality-Sensitive Hashing (BPLSH), Clustering-Based Convex Hull (CBCH), and Shell Extraction (SE), suggest that our proposed methods are effective and potentially useful.
Suggested Citation
Mohammed Shalaby & Mohamed Farouk & Hatem A Khater, 2024.
"Data reduction for SVM training using density-based border identification,"
PLOS ONE, Public Library of Science, vol. 19(4), pages 1-40, April.
Handle:
RePEc:plo:pone00:0300641
DOI: 10.1371/journal.pone.0300641
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.