IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300194.html
   My bibliography  Save this article

LDA2Net Digging under the surface of COVID-19 scientific literature topics via a network-based approach

Author

Listed:
  • Giorgia Minello
  • Carlo Romano Marcello Alessandro Santagiustina
  • Massimo Warglien

Abstract

During the COVID-19 pandemic, the scientific literature related to SARS-COV-2 has been growing dramatically. These literary items encompass a varied set of topics, ranging from vaccination to protective equipment efficacy as well as lockdown policy evaluations. As a result, the development of automatic methods that allow an in-depth exploration of this growing literature has become a relevant issue, both to identify the topical trends of COVID-related research and to zoom-in on its sub-themes. This work proposes a novel methodology, called LDA2Net, which combines topic modelling and network analysis, to investigate topics under their surface. More specifically, LDA2Net exploits the frequencies of consecutive words pairs (i.e. bigram) to build those network structures underlying the hidden topics extracted from large volumes of text by Latent Dirichlet Allocation (LDA). Results are promising and suggest that the topic model efficacy is magnified by the network-based representation. In particular, such enrichment is noticeable when it comes to displaying and exploring the topics at different levels of granularity.

Suggested Citation

  • Giorgia Minello & Carlo Romano Marcello Alessandro Santagiustina & Massimo Warglien, 2024. "LDA2Net Digging under the surface of COVID-19 scientific literature topics via a network-based approach," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-33, April.
  • Handle: RePEc:plo:pone00:0300194
    DOI: 10.1371/journal.pone.0300194
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300194
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300194&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scrucca, Luca, 2016. "Identifying connected components in Gaussian finite mixture models for clustering," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    2. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    3. Alessandro Casa & Luca Scrucca & Giovanna Menardi, 2021. "Better than the best? Answers via model ensemble in density-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 599-623, September.
    4. Kunhui Zhang & Yen-Chi Chen, 2021. "Refined Mode-Clustering via the Gradient of Slope," Stats, MDPI, vol. 4(2), pages 1-23, June.
    5. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    6. Warren C Jochem & Douglas R Leasure & Oliver Pannell & Heather R Chamberlain & Patricia Jones & Andrew J Tatem, 2021. "Classifying settlement types from multi-scale spatial patterns of building footprints," Environment and Planning B, , vol. 48(5), pages 1161-1179, June.
    7. Abby Flynt & Nema Dean, 2019. "Growth Mixture Modeling with Measurement Selection," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 3-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.