IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0299865.html
   My bibliography  Save this article

Association rule mining with a special rule coding and dynamic genetic algorithm for air quality impact factors in Beijing, China

Author

Listed:
  • Xiaoxuan Wu
  • Qiang Wen
  • Jun Zhu

Abstract

Understanding air quality requires a comprehensive understanding of its various factors. Most of the association rule techniques focuses on high frequency terms, ignoring the potential importance of low- frequency terms and causing unnecessary storage space waste. Therefore, a dynamic genetic association rule mining algorithm is proposed in this paper, which combines the improved dynamic genetic algorithm with the association rule mining algorithm to realize the importance mining of low- frequency terms. Firstly, in the chromosome coding phase of genetic algorithm, an innovative multi-information coding strategy is proposed, which selectively stores similar values of different levels in one storage unit. It avoids storing all the values at once and facilitates efficient mining of valid rules later. Secondly, by weighting the evaluation indicators such as support, confidence and promotion in association rule mining, a new evaluation index is formed, avoiding the need to set a minimum threshold for high-interest rules. Finally, in order to improve the mining performance of the rules, the dynamic crossover rate and mutation rate are set to improve the search efficiency of the algorithm. In the experimental stage, this paper adopts the 2016 annual air quality data set of Beijing to verify the effectiveness of the unit point multi-information coding strategy in reducing the rule storage air, the effectiveness of mining the rules formed by the low frequency item set, and the effectiveness of combining the rule mining algorithm with the swarm intelligence optimization algorithm in terms of search time and convergence. In the experimental stage, this paper adopts the 2016 annual air quality data set of Beijing to verify the effectiveness of the above three aspects. The unit point multi-information coding strategy reduced the rule space storage consumption by 50%, the new evaluation index can mine more interesting rules whose interest level can be up to 90%, while mining the rules formed by the lower frequency terms, and in terms of search time, we reduced it about 20% compared with some meta-heuristic algorithms, while improving convergence.

Suggested Citation

  • Xiaoxuan Wu & Qiang Wen & Jun Zhu, 2024. "Association rule mining with a special rule coding and dynamic genetic algorithm for air quality impact factors in Beijing, China," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-23, March.
  • Handle: RePEc:plo:pone00:0299865
    DOI: 10.1371/journal.pone.0299865
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299865
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0299865&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0299865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.