IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0299846.html
   My bibliography  Save this article

TITAN: Combining a bidirectional forwarding graph and GCN to detect saturation attack targeted at SDN

Author

Listed:
  • Longyan Ran
  • Yunhe Cui
  • Jianpeng Zhao
  • Hongzhen Yang

Abstract

The decoupling of control and forwarding layers brings Software-Defined Networking (SDN) the network programmability and global control capability, but it also poses SDN security risks. The adversaries can use the forwarding and control decoupling character of SDN to forge legitimate traffic, launching saturation attacks targeted at SDN switches. These attacks can cause the overflow of switch flow tables, thus making the switch cannot forward benign network traffic. How to effectively detect saturation attack is a research hotspot. There are only a few graph-based saturation attack detection methods. Meanwhile, the current graph generation methods may take useless or misleading information to the attack detection, thus decreasing the attack detection accuracy. To solve the above problems, this paper proposes TITAN, a bidirecTional forwardIng graph-based saturaTion Attack detectioN method. TITAN defines flow forwarding rules and topology information, and designs flow statistical features. Based on these definitions, TITAN generates nodes of the bi-forwarding graph based on the flow statistics features and edges of the bi-forwarding graph based on the network traffic routing paths. In this way, each traffic flow in the network is transformed into a bi-directional forwarding graph. Then TITAN feeds the above bidirectional forwarding graph into a Graph Convolutional Network (GCN) to detect whether the flow is a saturation attack flow. The experimental results show that TITAN can effectively detect saturation attacks in SDNs with a detection accuracy of more than 97%.

Suggested Citation

  • Longyan Ran & Yunhe Cui & Jianpeng Zhao & Hongzhen Yang, 2024. "TITAN: Combining a bidirectional forwarding graph and GCN to detect saturation attack targeted at SDN," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-25, April.
  • Handle: RePEc:plo:pone00:0299846
    DOI: 10.1371/journal.pone.0299846
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299846
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0299846&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0299846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amit Sundas & Sumit Badotra & Salil Bharany & Ahmad Almogren & Elsayed M. Tag-ElDin & Ateeq Ur Rehman, 2022. "HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naif Alsharabi & Tayyaba Shahwar & Ateeq Ur Rehman & Yasser Alharbi, 2023. "Implementing Magnetic Resonance Imaging Brain Disorder Classification via AlexNet–Quantum Learning," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    2. Ahsan Bin Tufail & Inam Ullah & Ateeq Ur Rehman & Rehan Ali Khan & Muhammad Abbas Khan & Yong-Kui Ma & Nadar Hussain Khokhar & Muhammad Tariq Sadiq & Rahim Khan & Muhammad Shafiq & Elsayed Tag Eldin &, 2022. "On Disharmony in Batch Normalization and Dropout Methods for Early Categorization of Alzheimer’s Disease," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    3. Zhicong Tan & Qinqin Zhang & Gongpu Lan & Jingjiang Xu & Chubin Ou & Lin An & Jia Qin & Yanping Huang, 2024. "OCT Retinopathy Classification via a Semi-Supervised Pseudo-Label Sub-Domain Adaptation and Fine-Tuning Method," Mathematics, MDPI, vol. 12(2), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.