Author
Listed:
- Guangjie Liu
- Kuo Diao
- Jinlong Zhu
- Qi Wang
- Meng Li
Abstract
As essential components of human society, buildings serve a multitude of functions and significance. Convolutional Neural Network (CNN) has made remarkable progress in the task of building extraction from detailed satellite imagery, owing to the potent capability to capture local information. However, CNN performs suboptimal in extracting larger buildings. Conversely, Transformer has excelled in capturing global information through self-attention mechanisms but are less effective in capturing local information compared to CNN, resulting in suboptimal performance in extracting smaller buildings. Therefore, we have designed the hybrid model STransU2Net, which combines meticulously designed Transformer and CNN to extract buildings of various sizes. In detail, we designed a Bottleneck Pooling Block (BPB) to replace the conventional Max Pooling layer during the downsampling phase, aiming to enhance the extraction of edge information. Furthermore, we devised the Channel And Spatial Attention Block (CSAB) to enhance the target location information during the encoding and decoding stages. Additionally, we added a Swin Transformer Block (STB) at the skip connection location to enhance the model’s global modeling ability. Finally, we empirically assessed the performance of STransU2Net on both the Aerial imagery and Satellite II datasets, The IoU achieved state-of-the-art results with 91.04% and 59.09%, respectively, outperforming other models.
Suggested Citation
Guangjie Liu & Kuo Diao & Jinlong Zhu & Qi Wang & Meng Li, 2024.
"STransU2Net: Transformer based hybrid model for building segmentation in detailed satellite imagery,"
PLOS ONE, Public Library of Science, vol. 19(9), pages 1-19, September.
Handle:
RePEc:plo:pone00:0299732
DOI: 10.1371/journal.pone.0299732
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299732. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.