Author
Listed:
- Aseem Partap Singh Gill
- Jose Zariffa
Abstract
Neurostimulation and neural recording are crucial to develop neuroprostheses that can restore function to individuals living with disabilities. While neurostimulation has been successfully translated into clinical use for several applications, it remains challenging to robustly collect and interpret neural recordings, especially for chronic applications. Nerve cuff electrodes offer a viable option for recording nerve signals, with long-term implantation success. However, nerve cuff electrodes’ signals have low signal-to-noise ratios, resulting in reduced selectivity between neural pathways. The objective of this study was to determine whether deep learning techniques, specifically networks tailored for time series applications, can increase the recording selectivity achievable using multi-contact nerve cuff electrodes. We compared several neural network architectures, the impact and trade-off of window length on classification performance, and the benefit of data augmentation. Evaluation was carried out using a previously collected dataset of 56-channel nerve cuff recordings from the sciatic nerve of Long-Evans rats, which included afferent signals evoked using three types of mechanical stimuli. Through this study, the best model achieved an accuracy of 0.936 ± 0.084 and an F1-score of 0.917 ± 0.103, using 50 ms windows of data and an augmented training set. These results demonstrate the effectiveness of applying CNNs designed for time-series data to peripheral nerve recordings, and provide insights into the relationship between window duration and classification performance in this application.
Suggested Citation
Aseem Partap Singh Gill & Jose Zariffa, 2024.
"Time series classification of multi-channel nerve cuff recordings using deep learning,"
PLOS ONE, Public Library of Science, vol. 19(3), pages 1-16, March.
Handle:
RePEc:plo:pone00:0299271
DOI: 10.1371/journal.pone.0299271
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299271. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.