Author
Listed:
- Anna Badura
- Mariusz Baumgart
- Magdalena Grzonkowska
- Mateusz Badura
- Piotr Janiewicz
- Michał Szpinda
- Adam Buciński
Abstract
The present article concentrates on an innovative analysis that was performed to assess the development of the femur in human fetuses using artificial intelligence. As a prerequisite, linear dimensions, cross-sectional surface areas and volumes of the femoral shaft primary ossification center in 47 human fetuses aged 17–30 weeks, originating from spontaneous miscarriages and preterm deliveries, were evaluated with the use of advanced imaging techniques such as computed tomography and digital image analysis. In order to ensure the data representativeness and to avoid introducing any hidden structures that may exist in the data, the entire dataset was randomized and separated into three subsets: training (50% of cases), testing (25% of cases), and validation (25% of cases). Based on the collected numerical data, an artificial neural network was devised, trained, and subject to testing in order to synchronously estimate five parameters of the femoral shaft primary ossification center, thus leveraging fundamental information such as gestational age and femur length. The findings reveal the formulated multi-layer perceptron model denoted as MLP 2-3-2-5 to exhibit robust predictive efficacy, as evidenced by the linear correlation coefficient between actual values and network outputs: R = 0.955 for the training dataset, R = 0.942 for validation, and R = 0.953 for the testing dataset. The authors have cogently demonstrated that the use of an artificial neural network to assess the growing femur in the human fetus may be a valuable tool in prenatal tests, enabling medical doctors to quickly and precisely assess the development of the fetal femur and detect potential anatomical abnormalities.
Suggested Citation
Anna Badura & Mariusz Baumgart & Magdalena Grzonkowska & Mateusz Badura & Piotr Janiewicz & Michał Szpinda & Adam Buciński, 2024.
"Application of artificial neural networks to evaluate femur development in the human fetus,"
PLOS ONE, Public Library of Science, vol. 19(3), pages 1-11, March.
Handle:
RePEc:plo:pone00:0299062
DOI: 10.1371/journal.pone.0299062
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299062. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.