Author
Abstract
High-precision waveform identification and measurement are effective for waveform detection and evaluation in signal processing. The accuracy of waveform identification, precision of measurement, and speed of response are important indicators of waveform measurement instruments. To detect the waveform accurately, a hold and attenuation circuit divided into two is designed, and the STM32F4 microcontroller is used to accurately capture and perform spectrum analysis using a high-precision analog-to-digital converter based on fast Fourier transform technology to identify key parameters, such as waveform type, frequency, peak-to-peak value, and duty cycle. To improve the recognition accuracy and response speed, technical solutions, such as high-frequency sampling and over-zero detection, are used to improve the system efficiency. Algorithm simulation, circuit simulation, and physical testing show that the high-precision waveform synchronization recognition circuit and algorithm can accurately recognize various essential waveforms in the voltage and frequency ranges of 50 mV ≤ VPP ≤ 10 V and 1 Hz ≤ f ≤ 50 kHz, respectively, and simultaneously measure important parameters, such as frequency, peak-to-peak value, and duty cycle with an accuracy within ±1%. Intelligent linkage, no intermediate parameter setting, and a response speed of approximately 0.3 s make it suitable for such applications as fast and high-precision waveform intelligent detection and display. The method is highly integrated, simple to operate, cost-effective, and practical.
Suggested Citation
Dan Gui & Zong-jie Yu, 2024.
"Research on the key technology of high-precision waveform synchronization identification and measurement,"
PLOS ONE, Public Library of Science, vol. 19(3), pages 1-9, March.
Handle:
RePEc:plo:pone00:0299027
DOI: 10.1371/journal.pone.0299027
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299027. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.