Author
Listed:
- Soohwan Jeong
- Jeongseon Kim
- Byung Suk Lee
- Sungsu Lim
Abstract
Social networks often involve the users rating each other based on their beliefs, abilities, and other characteristics. This is particularly common in e-commerce platforms where buyers rate sellers based on their trustworthiness. However, the rating tends to vary between users due to differences in their individual scoring criteria. For example, in a transaction network, a positive user may give a high rating unless the transaction was unsatisfactory while a neutral user may give a mid-rating, consequently giving the same numeric score to different levels of satisfaction. In this paper, we propose a novel method called user tendency-based rating scaling, which adjusts the current rating (its score) based on the pattern of past ratings. We investigate whether this rating scaling method can classify between “good users” and “bad users” in online trade social networks better when compared with using the original rating scores without scaling. Classifying between good users and bad users is especially important for anonymous rating networks like Bitcoin transaction networks, where users’ reputations must be recorded to preclude fraudulent and risky users. We evaluate the proposed rating scaling method by performing user classification, link prediction, and clustering tasks, using three real-world online rating network datasets. We use both the original ratings and the scaled ratings as weights of graphs and use a weighted graph embedding method to find node representations that reflect users’ positive and negative information. The experimental results showed that using the proposed rating scaling method outperformed using the original (i.e., unscaled) ratings by up to 17% in classification accuracy, and by up to 2.5% in link prediction based on the AUC ROC measure, and by up to 21% in the clustering tasks based on the Dunn-index.
Suggested Citation
Soohwan Jeong & Jeongseon Kim & Byung Suk Lee & Sungsu Lim, 2024.
"User tendency-based rating scaling in online trading networks,"
PLOS ONE, Public Library of Science, vol. 19(4), pages 1-24, April.
Handle:
RePEc:plo:pone00:0297903
DOI: 10.1371/journal.pone.0297903
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297903. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.