IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297496.html
   My bibliography  Save this article

Ultrasound tomography enhancement by signal feature extraction with modular machine learning method

Author

Listed:
  • Bartłomiej Baran
  • Dariusz Majerek
  • Piotr Szyszka
  • Dariusz Wójcik
  • Tomasz Rymarczyk

Abstract

Robust and reliable diagnostic methods are desired in various types of industries. This article presents a novel approach to object detection in industrial or general ultrasound tomography. The key idea is to analyze the time-dependent ultrasonic signal recorded by three independent transducers of an experimental system. It focuses on finding common or related characteristics of these signals using custom-designed deep neural network models. In principle, models use convolution layers to extract common features of signals, which are passed to dense layers responsible for predicting the number of objects or their locations and sizes. Predicting the number and properties of objects are characterized by a high value of the coefficient of determination R2 = 99.8% and R2 = 98.4%, respectively. The proposed solution can result in a reliable and low-cost method of object detection for various industry sectors.

Suggested Citation

  • Bartłomiej Baran & Dariusz Majerek & Piotr Szyszka & Dariusz Wójcik & Tomasz Rymarczyk, 2024. "Ultrasound tomography enhancement by signal feature extraction with modular machine learning method," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0297496
    DOI: 10.1371/journal.pone.0297496
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297496
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297496&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dariusz Majerek & Tomasz Rymarczyk & Dariusz Wójcik & Edward Kozłowski & Magda Rzemieniak & Janusz Gudowski & Konrad Gauda, 2021. "Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography," Energies, MDPI, vol. 14(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Przysucha & Dariusz Wójcik & Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Marcin Gąsior, 2023. "Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net," Energies, MDPI, vol. 16(3), pages 1-22, February.
    2. Dariusz Wójcik & Tomasz Rymarczyk & Bartosz Przysucha & Michał Gołąbek & Dariusz Majerek & Tomasz Warowny & Manuchehr Soleimani, 2023. "Energy Reduction with Super-Resolution Convolutional Neural Network for Ultrasound Tomography," Energies, MDPI, vol. 16(3), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.