IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297364.html
   My bibliography  Save this article

Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm

Author

Listed:
  • Lanh Si Ho
  • Van Quan Tran

Abstract

The compressive strength (CS) of the hollow concrete masonry prism is known as an important parameter for designing masonry structures. In general, the CS is determined using laboratory tests, however, laboratory tests are time-consuming and high-cost. Thus, it is necessary to evaluate and estimate the CS using different methods, for example, machine learning techniques. This study employed Gradient Boosting (GB) to evaluate and predict the CS of hollow masonry prism. The database consists of 102 hollow concrete specimens taken from different previous published literature used for modeling. The output is the CS of the hollow masonry prism, while the inputs include the compressive strength of mortar (fm), the compressive strength of blocks (fb), height-to-thickness ratio (h/t), the ratio of fm/fb. To reduce the overfitting problem, this study used K-Fold cross-validation, then particle swarm optimization (PSO) was employed to obtain the optimum hyperparameter. The GB model then was modeled using the optimum hyperparameters. The results showed that the GB model performed very well in evaluating and predicting the CS of the hollow masonry prims with a high prediction accuracy, the values of R2, RMSE, MAE, and MAPE are 0.977, 0.803 MPa, 0.612 MPa, and 0.036%, respectively. The performance of the GB model in this study outperformed in comparison to six different machine learning models (decision tree, linear regression, random forest regression, ridge regression, Artificial Neural network, and Extreme Gradient Boosting) used in previous studies. The results of sensitivity analysis using SHAP and PDP-2D indicate that the CS is strongly dependent on the fb (with a mean SHAP value of 3.2), h/t (with a mean SHAP value of 1.63), while the fm/fb (with a mean SHAP value of 0.57) had a small effect on the CS. Thus, it can be stated that this research provides a good method to evaluate and predict the CS of the hollow masonry prism, which can bring good knowledge for practical application in this field.

Suggested Citation

  • Lanh Si Ho & Van Quan Tran, 2024. "Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-23, March.
  • Handle: RePEc:plo:pone00:0297364
    DOI: 10.1371/journal.pone.0297364
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297364
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297364&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.