IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296992.html
   My bibliography  Save this article

Lightweight high-precision SAR ship detection method based on YOLOv7-LDS

Author

Listed:
  • Shiliang Zhu
  • Min Miao

Abstract

The current challenges in Synthetic Aperture Radar (SAR) ship detection tasks revolve around handling significant variations in target sizes and managing high computational expenses, which hinder practical deployment on satellite or mobile airborne platforms. In response to these challenges, this research presents YOLOv7-LDS, a lightweight yet highly accurate SAR ship detection model built upon the YOLOv7 framework. In the core of YOLOv7-LDS’s architecture, we introduce a streamlined feature extraction network that strikes a delicate balance between detection precision and computational efficiency. This network is founded on Shufflenetv2 and incorporates Squeeze-and-Excitation (SE) attention mechanisms as its key elements. Additionally, in the Neck section, we introduce the Weighted Efficient Aggregation Network (DCW-ELAN), a fundamental feature extraction module that leverages Coordinate Attention (CA) and Depthwise Convolution (DWConv). This module efficiently aggregates features while preserving the ability to identify small-scale variations, ensuring top-quality feature extraction. Furthermore, we introduce a lightweight Spatial Pyramid Dilated Convolution Cross-Stage Partial Channel (LSPHDCCSPC) module. LSPHDCCSPC is a condensed version of the Spatial Pyramid Pooling Cross-Stage Partial Channel (SPPCSPC) module, incorporating Dilated Convolution (DConv) as a central component for extracting multi-scale information. The experimental results show that YOLOv7-LDS achieves a remarkable Mean Average Precision (mAP) of 99.1% and 95.8% on the SAR Ship Detection Dataset (SSDD) and the NWPU VHR-10 dataset with a parameter count (Params) of 3.4 million, a Giga Floating Point Operations Per Second (GFLOPs) of 6.1 and an Inference Time (IT) of 4.8 milliseconds. YOLOv7-LDS effectively strikes a fine balance between computational cost and detection performance, surpassing many of the current state-of-the-art object detection models. As a result, it offers a more resilient solution for maritime ship monitoring.

Suggested Citation

  • Shiliang Zhu & Min Miao, 2024. "Lightweight high-precision SAR ship detection method based on YOLOv7-LDS," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-26, February.
  • Handle: RePEc:plo:pone00:0296992
    DOI: 10.1371/journal.pone.0296992
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296992
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296992&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.