Author
Listed:
- Xiaoyu Li
- Xiaodong Wang
- Xuan Liao
Abstract
Objective: To evaluate the accuracy of 10 formulas for calculating intraocular lens (IOL) power in cataract eye with an axial length (AL) of more than 28.0 mm. Methods: We searched scientific databases including PubMed, EMBASE, Web of Science and Cochrane Library for research published over the past 5 years, up to Sept 2023. The inclusion criteria were case series studies that compared different formulas (Barrett II, EVO, Kane, Hill-RBF, Haigis, Hoffer Q, Holladay 1, SRK/T, Holladay 1 w-k and SRK/T w-k), in patients with extremely long AL undergoing uncomplicated cataract surgery with IOL implantation. The mean difference (MD) of mean absolute error (MAE) and the odds ratio (OR) of both the percentage of eyes within ±0.50D of prediction error (PPE±0.50D) and the percentage of eyes within ±1.00D of prediction error (PPE±1.00D) among different formulas were pooled using meta-analysis. Results: A total of 11 studies, involving 1376 eyes, were included to evaluate the 10 formulas mentioned above. Among these formulas, Barrett II, EVO, Kane, and Hill-RBF demonstrated significantly lower MAE values compared to SRK/T. Furthermore, Kane and Hill-RBF had lower MAE values than EVO. Additionally, Barrett II and Kane yielded significantly lower MAE values than Haigis while Hill-RBF showed significantly lower MAE values than Holladay 1. Moreover, Hill-RBF showed the highest values for both PPE±0.50D and PPE±1.00D, followed by Kane. Both EVO and Kane had higher values of PPE±0.50D and PPE±1.00D compared to Haigis and SRK/T. Conclusion: The Wang-Koch adjusted formulas and new-generation formulas have shown potential for higher accuracy in predicting IOL power for cataract patients with extremely long AL compared to traditional formulas. Based on the current limited clinical studies, Hill-RBF and Kane formulas seem to be a better choice for eyes with extremely long AL.
Suggested Citation
Xiaoyu Li & Xiaodong Wang & Xuan Liao, 2024.
"How to choose the intraocular lens power calculation formulas in eyes with extremely long axial length? A systematic review and meta-analysis,"
PLOS ONE, Public Library of Science, vol. 19(1), pages 1-14, January.
Handle:
RePEc:plo:pone00:0296771
DOI: 10.1371/journal.pone.0296771
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296771. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.