Author
Listed:
- Hong Wang
- Xiaohu Hao
- Yuzhuo He
- Long Fan
Abstract
Due to the unnecessary immune responses induced by therapeutic antibodies in clinical applications, immunogenicity is an important factor to be considered in the development of antibody therapeutics. To a certain extent, there is a lag in using wet-lab experiments to test the immunogenicity in the development process of antibody therapeutics. Developing a computational method to predict the immunogenicity at once the antibody sequence is designed, is of great significance for the screening in the early stage and reducing the risk of antibody therapeutics development. In this study, a computational immunogenicity prediction method was proposed on the basis of AntiBERTy-based features of amino sequences in the antibody variable region. The AntiBERTy-based sequence features were first calculated using the AntiBERTy pre-trained model. Principal component analysis (PCA) was then applied to reduce the extracted feature to two dimensions to obtain the final features. AutoGluon was then used to train multiple machine learning models and the best one, the weighted ensemble model, was obtained through 5-fold cross-validation on the collected data. The data contains 199 commercial therapeutic antibodies, of which 177 samples were used for model training and 5-fold cross-validation, and the remaining 22 samples were used as an independent test dataset to evaluate the performance of the constructed model and compare it with other prediction methods. Test results show that the proposed method outperforms the comparison method with 0.7273 accuracy on the independent test dataset, which is 9.09% higher than the comparison method. The corresponding web server is available through the official website of GenScript Co., Ltd., https://www.genscript.com/tools/antibody-immunogenicity.
Suggested Citation
Hong Wang & Xiaohu Hao & Yuzhuo He & Long Fan, 2024.
"AbImmPred: An immunogenicity prediction method for therapeutic antibodies using AntiBERTy-based sequence features,"
PLOS ONE, Public Library of Science, vol. 19(2), pages 1-15, February.
Handle:
RePEc:plo:pone00:0296737
DOI: 10.1371/journal.pone.0296737
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296737. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.