IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296725.html
   My bibliography  Save this article

Numerical stability of DeepGOPlus inference

Author

Listed:
  • Inés Gonzalez Pepe
  • Yohan Chatelain
  • Gregory Kiar
  • Tristan Glatard

Abstract

Convolutional neural networks (CNNs) are currently among the most widely-used deep neural network (DNN) architectures available and achieve state-of-the-art performance for many problems. Originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted numerical stability challenges in DNNs, which also relates to their known sensitivity to noise injection. These challenges can jeopardise their performance and reliability. This paper investigates DeepGOPlus, a CNN that predicts protein function. DeepGOPlus has achieved state-of-the-art performance and can successfully take advantage and annotate the abounding protein sequences emerging in proteomics. We determine the numerical stability of the model’s inference stage by quantifying the numerical uncertainty resulting from perturbations of the underlying floating-point data. In addition, we explore the opportunity to use reduced-precision floating point formats for DeepGOPlus inference, to reduce memory consumption and latency. This is achieved by instrumenting DeepGOPlus’ execution using Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the primary deliverable of the DeepGOPlus model, widely applicable across different environments. All in all, our results show that although the DeepGOPlus CNN is very stable numerically, it can only be selectively implemented with lower-precision floating-point formats. We conclude that predictions obtained from the pre-trained DeepGOPlus model are very reliable numerically, and use existing floating-point formats efficiently.

Suggested Citation

  • Inés Gonzalez Pepe & Yohan Chatelain & Gregory Kiar & Tristan Glatard, 2024. "Numerical stability of DeepGOPlus inference," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0296725
    DOI: 10.1371/journal.pone.0296725
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296725
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296725&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zi-Lin Li & Shuxin Pei & Ziying Chen & Teng-Yu Huang & Xu-Dong Wang & Lin Shen & Xuebo Chen & Qi-Qiang Wang & De-Xian Wang & Yu-Fei Ao, 2024. "Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yu Zong & Yuxin Wang & Yi Yang & Dan Zhao & Xiaoqing Wang & Chengpin Shen & Liang Qiao, 2023. "DeepFLR facilitates false localization rate control in phosphoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Anshul Thakur & Tingting Zhu & Vinayak Abrol & Jacob Armstrong & Yujiang Wang & David A. Clifton, 2024. "Data encoding for healthcare data democratization and information leakage prevention," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Michiel Stock & Wim Van Criekinge & Dimitri Boeckaerts & Steff Taelman & Maxime Van Haeverbeke & Pieter Dewulf & Bernard De Baets, 2024. "Hyperdimensional computing: A fast, robust, and interpretable paradigm for biological data," PLOS Computational Biology, Public Library of Science, vol. 20(9), pages 1-23, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.