Author
Listed:
- Dylan R Kerr
- Jeanaflor Crystal T Concepcion
- Seth A Strom
- Dean E Riechers
Abstract
Resistance to preemergence (PRE) soil-applied herbicides, such as inhibitors of very-long-chain fatty acid (VLCFA) elongases, was documented in two waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer] populations (SIR and CHR) from Illinois, USA. To limit the spread of resistant weed populations, rapid detection measures are necessary. Soil-based resistance assays are limited by edaphic factors, application timing, variable seeding depth and rainfall amount. Therefore, cost-effective techniques mitigating effects of edaphic factors that are appropriate for small- to large-scale assays are needed. Our research goal was to identify and quantify resistance to the VLCFA-inhibiting herbicides, S-metolachlor and pyroxasulfone, using a soilless greenhouse assay. Dose-response experiments were conducted under greenhouse conditions with pre-germinated waterhemp seeds planted on the vermiculite surface, which had been saturated with S-metolachlor (0.015–15 μM), pyroxasulfone (0.0005–1.5 μM), or S-metolachlor plus the cytochrome P450 (P450) inhibitor, malathion. Lethal dose estimates of 50% (LD50) and growth reduction of 50% (GR50) were calculated for S-metolachlor and pyroxasulfone PRE and used to determine resistance indices (RI) for resistant populations (CHR and SIR) relative to sensitive populations, SEN and ACR. RI values for S-metolachlor using LD50 values calculated relative to SEN and ACR were 17.2 and 15.2 (CHR) or 11.5 and 10.1 (SIR), while RI values for pyroxasulfone using LD50 values calculated relative to SEN and ACR were 3.8 and 3.1 (CHR) or 4.8 and 3.8 (SIR). Malathion decreased the GR50 of S-metolachlor to a greater degree in CHR compared to ACR, consistent with P450 involvement in S-metolachlor resistance in CHR. Results from these soilless assays are in accord with previous findings in soil-based systems that demonstrate CHR and SIR are resistant to S-metolachlor and pyroxasulfone. This method provides an effective, reproducible alternative to soil-based systems for studying suspected PRE herbicide-resistant populations and will potentially assist in identifying non-target-site resistance mechanisms.
Suggested Citation
Dylan R Kerr & Jeanaflor Crystal T Concepcion & Seth A Strom & Dean E Riechers, 2023.
"Quantifying resistance to very-long-chain fatty acid-inhibiting herbicides in Amaranthus tuberculatus using a soilless assay,"
PLOS ONE, Public Library of Science, vol. 18(12), pages 1-19, December.
Handle:
RePEc:plo:pone00:0295927
DOI: 10.1371/journal.pone.0295927
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295927. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.