Author
Abstract
Recent work on transformer-based neural networks has led to impressive advances on multiple-choice natural language processing (NLP) problems, such as Question Answering (QA) and abductive reasoning. Despite these advances, there is limited work still on systematically evaluating such models in ambiguous situations where (for example) no correct answer exists for a given prompt among the provided set of choices. Such ambiguous situations are not infrequent in real world applications. We design and conduct an experimental study of this phenomenon using three probes that aim to ‘confuse’ the model by perturbing QA instances in a consistent and well-defined manner. Using a detailed set of results based on an established transformer-based multiple-choice QA system on two established benchmark datasets, we show that the model’s confidence in its results is very different from that of an expected model that is ‘agnostic’ to all choices that are incorrect. Our results suggest that high performance on idealized QA instances should not be used to infer or extrapolate similarly high performance on more ambiguous instances. Auxiliary results suggest that the model may not be able to distinguish between these two situations with sufficient certainty. Stronger testing protocols and benchmarking may hence be necessary before such models are deployed in front-facing systems or ambiguous decision making with significant human impact.
Suggested Citation
Ke Shen & Mayank Kejriwal, 2023.
"Quantifying confidence shifts in a BERT-based question answering system evaluated on perturbed instances,"
PLOS ONE, Public Library of Science, vol. 18(12), pages 1-21, December.
Handle:
RePEc:plo:pone00:0295925
DOI: 10.1371/journal.pone.0295925
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295925. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.