Author
Abstract
Knowledge tracing models have gained prominence in educational data mining, with applications like the Self-Attention Knowledge Tracing model, which captures the exercise-knowledge relationship. However, conventional knowledge tracing models focus solely on static question-knowledge and knowledge-knowledge relationships, treating them with equal significance. This simplistic approach often succumbs to subjective labeling bias and lacks the depth to capture nuanced exercise-knowledge connections. In this study, we propose a novel knowledge tracing model called Knowledge Relation Rank Enhanced Heterogeneous Learning Interaction Modeling for Neural Graph Forgetting Knowledge Tracing. Our model mitigates the impact of subjective labeling by fine-tuning the skill relation matrix and Q-matrix. Additionally, we employ Graph Convolutional Networks (GCNs) to capture intricate interactions between students, exercises, and skills. Specifically, the Knowledge Relation Importance Rank Calibration method is employed to generate the skill relation matrix and Q-matrix. These calibrated matrices, alongside heterogeneous interactions, serve as input for the GCN to compute exercise and skill embeddings. Subsequently, exercise embeddings, skill embeddings, item difficulty, and contingency tables collectively contribute to an exercise relation matrix, which is then fed into an attention mechanism for predictions. Experimental evaluations on two publicly available educational datasets demonstrate the superiority of our proposed model over baseline models, evidenced by enhanced performance across three evaluation metrics.
Suggested Citation
Linqing Li & Zhifeng Wang, 2023.
"Knowledge relation rank enhanced heterogeneous learning interaction modeling for neural graph forgetting knowledge tracing,"
PLOS ONE, Public Library of Science, vol. 18(12), pages 1-20, December.
Handle:
RePEc:plo:pone00:0295808
DOI: 10.1371/journal.pone.0295808
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295808. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.