IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295619.html
   My bibliography  Save this article

In-silico selection of peptides for the recognition of imidacloprid

Author

Listed:
  • Sarah Aldulaijan

Abstract

The sensitive detection of pesticides using low-cost receptors designed from peptides can widen their uses in the environmental surveillance for emerging pollutants. In-silico selection of peptides can help accelerate the design of receptor sequence banks for a given target of interest. In this work, we started from Lymnaea stagnalis acetylcholine-binding protein Q55R mutant receptor-imidacloprid complex, available in the PDB databank, to select three primary short peptides (YSP09, DMR12, WQW13 respectively having 9, 12 and 13 amino acids (AA) in length) from the pesticide interacting zones with the A, B and C chains of the nicotinic receptor. Using molecular docking and molecular dynamics (MD) simulations, we showed that the three peptides can form complexes with the target imidacloprid, having energies close to that obtained from a reference RNR12 peptide. Combination of these peptides allowed preparing a new set of longer peptides (YSM21, PSM22, PSW31 and WQA34) that have higher stability and affinity as shown by the MM-PBSA calculations. In particular, the WQA34 peptide displayed an average binding free energy of –6.44±0.27 kcal/mol, which is three times higher than that of the reference RNR12 peptide (–2.29±0.25 kcal/mol) and formed a stable complex with imidacloprid. Furthermore, the dissociation constants (Kd), calculated from the binding free energy, showed that WQA32 (40 μM) has three orders of magnitude lower Kd than the reference RNR12 peptide (3.4 × 104 μM). Docking and RMSD scores showed that the WQA34 peptide is potentially selective to the target imidacloprid with respect to acetamiprid and clothianidin. Therefore, this peptide can be used in wet-lab experiments to prepare a biosensor to selectively detect imidacloprid.

Suggested Citation

  • Sarah Aldulaijan, 2023. "In-silico selection of peptides for the recognition of imidacloprid," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0295619
    DOI: 10.1371/journal.pone.0295619
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295619
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295619&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.