IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295501.html
   My bibliography  Save this article

SSC: The novel self-stack ensemble model for thyroid disease prediction

Author

Listed:
  • Shengjun Ji

Abstract

Thyroid disease presents a significant health risk, lowering the quality of life and increasing treatment costs. The diagnosis of thyroid disease can be challenging, especially for inexperienced practitioners. Machine learning has been established as one of the methods for disease diagnosis based on previous studies. This research introduces a novel and more effective technique for predicting thyroid disease by utilizing machine learning methodologies, surpassing the performance of previous studies in this field. This study utilizes the UCI thyroid disease dataset, which consists of 9172 samples and 30 features, and exhibits a highly imbalanced target class distribution. However, machine learning algorithms trained on imbalanced thyroid disease data face challenges in reliably detecting minority data and disease. To address this issue, re-sampling is employed, which modifies the ratio between target classes to balance the data. In this study, the down-sampling approach is utilized to achieve a balanced distribution of target classes. A novel RF-based self-stacking classifier is presented in this research for efficient thyroid disease detection. The proposed approach demonstrates the ability to diagnose primary hypothyroidism, increased binding protein, compensated hypothyroidism, and concurrent non-thyroidal illness with an accuracy of 99.5%. The recommended model exhibits state-of-the-art performance, achieving 100% macro precision, 100% macro recall, and 100% macro F1-score. A thorough comparative assessment is conducted to demonstrate the viability of the proposed approach, including several machine learning classifiers, deep neural networks, and ensemble voting classifiers. The results of K-fold cross-validation provide further support for the efficacy of the proposed self-stacking classifier.

Suggested Citation

  • Shengjun Ji, 2024. "SSC: The novel self-stack ensemble model for thyroid disease prediction," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-25, January.
  • Handle: RePEc:plo:pone00:0295501
    DOI: 10.1371/journal.pone.0295501
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295501
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295501&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.