Author
Listed:
- Elise Lunde Gjelsvik
- Kristin Tøndel
Abstract
Linear prediction models based on data with large inhomogeneity or abrupt non-linearities often perform poorly because relationships between groups in the data dominate the model. Given that the data is locally linear, this can be overcome by splitting the data into smaller clusters and creating a local model within each cluster. In this study, the previously published Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) procedure was extended to deep learning, in order to increase the interpretability of the deep learning models through local modelling. Hierarchical Cluster-based Convolutional Neural Networks (HC-CNNs), Hierarchical Cluster-based Recurrent Neural Networks (HC-RNNs) and Hierarchical Cluster-based Support Vector Regression models (HC-SVRs) were implemented and tested on spectroscopic data consisting of Fourier Transform Infrared (FT-IR) measurements of raw material dry films, for prediction of average molecular weight during hydrolysis and a simulated data set constructed to contain three clusters of observations with different non-linear relationships between the independent variables and the response. HC-CNN, HC-RNN and HC-SVR outperformed HC-PLSR for the simulated data set, showing the disadvantage of PLSR for highly non-linear data, but for the FT-IR data set there was little to gain in prediction ability from using more complex models than HC-PLSR. Local modelling can ease the interpretation of deep learning models through highlighting differences in feature importance between different regions of the input or output space. Our results showed clear differences between the feature importance for the various local models, which demonstrate the advantages of a local modelling approach with regards to interpretation of deep learning models.
Suggested Citation
Elise Lunde Gjelsvik & Kristin Tøndel, 2023.
"Increased interpretation of deep learning models using hierarchical cluster-based modelling,"
PLOS ONE, Public Library of Science, vol. 18(12), pages 1-21, December.
Handle:
RePEc:plo:pone00:0295251
DOI: 10.1371/journal.pone.0295251
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.