Author
Listed:
- Bridget Smart
- Matthew Roughan
- Lewis Mitchell
Abstract
This work derives a theoretical value for the entropy of a Linear Additive Markov Process (LAMP), an expressive but simple model able to generate sequences with a given autocorrelation structure. Our research establishes that the theoretical entropy rate of a LAMP model is equivalent to the theoretical entropy rate of the underlying first-order Markov Chain. The LAMP model captures complex relationships and long-range dependencies in data with similar expressibility to a higher-order Markov process. While a higher-order Markov process has a polynomial parameter space, a LAMP model is characterised only by a probability distribution and the transition matrix of an underlying first-order Markov Chain. This surprising result can be explained by the information balance between the additional structure imposed by the next state distribution of the LAMP model, and the additional randomness of each new transition. Understanding the entropy of the LAMP model provides a tool to model complex dependencies in data while retaining useful theoretical results. To emphasise the practical applications, we use the LAMP model to estimate the entropy rate of the LastFM, BrightKite, Wikispeedia and Reuters-21578 datasets. We compare estimates calculated using frequency probability estimates, a first-order Markov model and the LAMP model, also considering two approaches to ensure the transition matrix is irreducible. In most cases the LAMP entropy rates are lower than those of the alternatives, suggesting that LAMP model is better at accommodating structural dependencies in the processes, achieving a more accurate estimate of the true entropy.
Suggested Citation
Bridget Smart & Matthew Roughan & Lewis Mitchell, 2024.
"The entropy rate of Linear Additive Markov Processes,"
PLOS ONE, Public Library of Science, vol. 19(4), pages 1-13, April.
Handle:
RePEc:plo:pone00:0295074
DOI: 10.1371/journal.pone.0295074
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295074. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.