Author
Listed:
- Jenson Jacob
- Selim Bozkurt
Abstract
Sagittal synostosis is a condition caused by the fused sagittal suture and results in a narrowed skull in infants. Spring-assisted cranioplasty is a correction technique used to expand skulls with sagittal craniosynostosis by placing compressed springs on the skull before six months of age. Proposed methods for surgical planning in spring-assisted sagittal craniosynostosis correction provide information only about the skull anatomy or require iterative finite element simulations. Therefore, the selection of surgical parameters such as spring dimensions and osteotomy sizes may remain unclear and spring-assisted cranioplasty may yield sub-optimal surgical results. The aim of this study is to develop the architectural structure of an automated tool to predict post-operative surgical outcomes in sagittal craniosynostosis correction with spring-assisted cranioplasty using machine learning and finite element analyses. Six different machine learning algorithms were tested using a finite element model which simulated a combination of various mechanical and geometric properties of the calvarium, osteotomy sizes, spring characteristics, and spring implantation positions. Also, a statistical shape model representing an average sagittal craniosynostosis calvarium in 5-month-old patients was used to assess the machine learning algorithms. XGBoost algorithm predicted post-operative cephalic index in spring-assisted sagittal craniosynostosis correction with high accuracy. Finite element simulations confirmed the prediction of the XGBoost algorithm. The presented architectural structure can be used to develop a tool to predict the post-operative cephalic index in spring-assisted cranioplasty in patients with sagittal craniosynostosis can be used to automate surgical planning and improve post-operative surgical outcomes in spring-assisted cranioplasty.
Suggested Citation
Jenson Jacob & Selim Bozkurt, 2023.
"Automated surgical planning in spring-assisted sagittal craniosynostosis correction using finite element analysis and machine learning,"
PLOS ONE, Public Library of Science, vol. 18(11), pages 1-15, November.
Handle:
RePEc:plo:pone00:0294879
DOI: 10.1371/journal.pone.0294879
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0294879. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.