Author
Listed:
- Li Wang
- Chaoran Ning
- Xiaoyi Wang
- Jiping Xu
- Zhiyao Zhao
- Jiabin Yu
- Huiyan Zhang
- Qian Sun
- Yuting Bai
- Xuebo Jin
- Qianhui Tang
Abstract
As for the problem that the traditional single depth prediction model has poor strain capacity to the prediction results of time series data when predicting lake eutrophication, this study takes the multi-factor water quality data affecting lake eutrophication as the main research object. A deep reinforcement learning model is proposed, which can realize the mutual conversion of water quality data prediction models at different times, select the optimal prediction strategy of lake eutrophication at the current time according to its own continuous learning, and improve the reinforcement learning algorithm. Firstly, the greedy factor, the fixed parameter of Agent learning training in reinforcement learning, is introduced into an arctangent function and the mean value reward factor is defined. On this basis, three Q estimates are introduced, and the weight parameters are obtained by calculating the realistic value of Q, taking the average value and the minimum value to update the final Q table, so as to get an Improved MIMO-DD-3Q Learning model. The preliminary prediction results of lake eutrophication are obtained, and the errors obtained are used as the secondary input to continue updating the Q table to build the final Improved MIMO-DD-3Q Learning model, so as to achieve the final prediction of water eutrophication. In this study, multi-factor water quality data of Yongding River in Beijing were selected from 0:00 on July 26, 2021 to 0:00 on September 5, 2021. Firstly, data smoothing and principal component analysis were carried out to confirm that there was a certain correlation between all factors in the occurrence of lake eutrophication. Then, the Improved MIMO-DD-3Q Learning prediction model was used for experimental verification. The results show that the Improved MIMO-DD-3Q Learning model has a good effect in the field of lake eutrophication prediction.
Suggested Citation
Li Wang & Chaoran Ning & Xiaoyi Wang & Jiping Xu & Zhiyao Zhao & Jiabin Yu & Huiyan Zhang & Qian Sun & Yuting Bai & Xuebo Jin & Qianhui Tang, 2023.
"Lake eutrophication prediction based on improved MIMO-DD-3Q Learning,"
PLOS ONE, Public Library of Science, vol. 18(11), pages 1-17, November.
Handle:
RePEc:plo:pone00:0294278
DOI: 10.1371/journal.pone.0294278
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0294278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.