Author
Listed:
- Tanja Bülow
- Ralf-Dieter Hilgers
- Nicole Heussen
Abstract
When data is derived under a single or multiple lower limits of quantification (LLOQ), estimation of distribution parameters as well as precision of these estimates appear to be challenging, as the way to account for unquantifiable observations due to LLOQs needs particular attention. The aim of this investigation is to characterize the precision of censored sample maximum likelihood estimates of the mean for normal, exponential and Poisson distribution affected by one or two LLOQs using confidence intervals (CI).In a simulation study, asymptotic and bias-corrected accelerated bootstrap CIs for the location parameter mean are compared with respect to coverage proportion and interval width. To enable this examination, we derived analytical expressions of the maximum likelihood location parameter estimate for the assumption of exponentially and Poisson distributed data, where the censored sample method and simple imputation method are used to account for LLOQs. Additionally, we vary the proportion of observations below the LLOQs.When based on the censored sample estimate, the bootstrap CI led to higher coverage proportions and narrower interval width than the asymptotic CI. The results differed by underlying distribution. Under the assumption of normality, the CI’s coverage proportion and width suffered most from high proportions of unquantifiable observations. For exponentially and Poisson distributed data, both CI approaches delivered similar results. To derive the CIs, the point estimates from the censored sample method are preferable, because the point estimate of the simple imputation method leads to higher bias for all investigated distributions. This biased simple imputation estimate impairs the coverage proportion of the respective CI.The bootstrap CI surpassed the asymptotic CIs with respect to coverage proportion for the investigated choice of distributional assumptions. The variety of distributions for which the methods are suitable gives the applicant a widely usable tool to handle LLOQ affected data with appropriate approaches.
Suggested Citation
Tanja Bülow & Ralf-Dieter Hilgers & Nicole Heussen, 2023.
"Confidence interval comparison: Precision of maximum likelihood estimates in LLOQ affected data,"
PLOS ONE, Public Library of Science, vol. 18(11), pages 1-17, November.
Handle:
RePEc:plo:pone00:0293640
DOI: 10.1371/journal.pone.0293640
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0293640. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.