IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0293424.html
   My bibliography  Save this article

Fixed-time event-triggered control for multi-agent systems with input delay

Author

Listed:
  • Linling Wang
  • Xiaoyan Xu
  • Bing Han

Abstract

An in-depth study on the fixed-time event-triggered obstacle avoidance consensus control in heterogeneous USV-AUV systems with input delay and uncertain disturbances are conducted in this paper. When initial state of the system fails to achieve consensus, the desired heterogeneous USV-AUV formation can be achieved by fixed-time consensus control, within a fixed predetermined time, regardless of the initial states. Besides, an event-triggered communication strategy among the agents is introduced in the system, significantly reducing communication energy consumption. By employing the proposed control strategy, the Zeno behavior also can be avoided. Additionally, an obstacle avoidance control algorithm for the heterogeneous USV-AUV system based on improved artificial potential fields (IAPF) is designed, which helps in avoiding both static and dynamic obstacles. Compared to existing research, this algorithm reduces control input jitter, resulting in smoother obstacle avoidance paths. Through extensive simulation experiments and comparisons with other methods, effectiveness and superiority of the proposed algorithm is validated.

Suggested Citation

  • Linling Wang & Xiaoyan Xu & Bing Han, 2023. "Fixed-time event-triggered control for multi-agent systems with input delay," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-24, November.
  • Handle: RePEc:plo:pone00:0293424
    DOI: 10.1371/journal.pone.0293424
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293424
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293424&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0293424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cai, Yuliang & Zhang, Huaguang & Liu, Yang & He, Qiang, 2020. "Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yuliang & Dai, Jing & Zhang, Huaguang & Wang, Yingchun, 2021. "Fixed-time leader-following/containment consensus of nonlinear multi-agent systems based on event-triggered mechanism," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Gao, Shuo & Wen, Guoguang & Zhai, Xiaoqin & Zheng, Peng, 2023. "Finite-/fixed-time bipartite consensus for first-order multi-agent systems via impulsive control," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    3. Shi, Sangli & Wang, Zhengxin & Song, Qiang & Xiao, Min & Jiang, Guo-Ping, 2022. "Leader-following quasi-bipartite synchronization of coupled heterogeneous harmonic oscillators via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Wang, Xin & Zhai, Shidong & Luo, Guoqiang & Huang, Tao, 2022. "Cluster synchronization in a network of nonlinear systems with directed topology and competitive relationships," Applied Mathematics and Computation, Elsevier, vol. 421(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0293424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.