Author
Abstract
In the actual design process of traditional power amplifiers, there is a problem of being cumbersome and unable to simultaneously meet low power and saturation modes. Therefore, an improved multi-objective optimization algorithm proposed by decomposition is introduced to optimize its matching network to achieve overall optimization design of power amplifiers. The algorithm, matching network, and optimized power amplifier performance are simulated and verified. The experimental outcomes denote that on the logic function with Zener diode transistor, the proposed algorithm has a mean generation distance index of 5.03E-3, which is lower than most algorithms. Its overall comprehensive performance is better than the comparison algorithm, and compared to the comparison algorithm, it converges more quickly in the early stage of iteration on 1 and 2, and tends to stabilize in the 40th generation, and completes convergence in the 80th generation. In addition, the optimal solution has already begun to appear around the 25th generation and reached saturation around the 70th generation. At the same time, in the actual working bandwidth, the optimized power amplifier saturation efficiency reaches 51.5%~61.9%, and the efficiency at 6dB power backoff is about 44.4%~56.5%. Overall, the algorithm proposed in the study is effective in optimizing power amplifiers and their matching networks, effectively solving the problem of insufficient efficiency in low power modes in traditional designs.
Suggested Citation
Jun Sun, 2023.
"A multi-objective optimization based doherty power amplifier and its matching network optimization method,"
PLOS ONE, Public Library of Science, vol. 18(12), pages 1-18, December.
Handle:
RePEc:plo:pone00:0293371
DOI: 10.1371/journal.pone.0293371
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0293371. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.