Author
Listed:
- Ruben D Zapata
- Shu Huang
- Earl Morris
- Chang Wang
- Christopher Harle
- Tanja Magoc
- Mamoun Mardini
- Tyler Loftus
- François Modave
Abstract
Objective: This study aimed to develop and validate predictive models using electronic health records (EHR) data to determine whether hospitalized COVID-19-positive patients would be admitted to alternative medical care or discharged home. Methods: We conducted a retrospective cohort study using deidentified data from the University of Florida Health Integrated Data Repository. The study included 1,578 adult patients (≥18 years) who tested positive for COVID-19 while hospitalized, comprising 960 (60.8%) female patients with a mean (SD) age of 51.86 (18.49) years and 618 (39.2%) male patients with a mean (SD) age of 54.35 (18.48) years. Machine learning (ML) model training involved cross-validation to assess their performance in predicting patient disposition. Results: We developed and validated six supervised ML-based prediction models (logistic regression, Gaussian Naïve Bayes, k-nearest neighbors, decision trees, random forest, and support vector machine classifier) to predict patient discharge status. The models were evaluated based on the area under the receiver operating characteristic curve (ROC-AUC), precision, accuracy, F1 score, and Brier score. The random forest classifier exhibited the highest performance, achieving an accuracy of 0.84 and an AUC of 0.72. Logistic regression (accuracy: 0.85, AUC: 0.71), k-nearest neighbor (accuracy: 0.84, AUC: 0.63), decision tree (accuracy: 0.84, AUC: 0.61), Gaussian Naïve Bayes (accuracy: 0.84, AUC: 0.66), and support vector machine classifier (accuracy: 0.84, AUC: 0.67) also demonstrated valuable predictive capabilities. Significance: This study’s findings are crucial for efficiently allocating healthcare resources during pandemics like COVID-19. By harnessing ML techniques and EHR data, we can create predictive tools to identify patients at greater risk of severe symptoms based on their medical histories. The models developed here serve as a foundation for expanding the toolkit available to healthcare professionals and organizations. Additionally, explainable ML methods, such as Shapley Additive Explanations, aid in uncovering underlying data features that inform healthcare decision-making processes.
Suggested Citation
Ruben D Zapata & Shu Huang & Earl Morris & Chang Wang & Christopher Harle & Tanja Magoc & Mamoun Mardini & Tyler Loftus & François Modave, 2023.
"Machine learning-based prediction models for home discharge in patients with COVID-19: Development and evaluation using electronic health records,"
PLOS ONE, Public Library of Science, vol. 18(10), pages 1-13, October.
Handle:
RePEc:plo:pone00:0292888
DOI: 10.1371/journal.pone.0292888
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292888. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.