Author
Listed:
- Hui-lin Zeng
- Qian Qiu
- Ting-xiong Fu
- Ai-ping Deng
- Xiang-yang Xie
Abstract
Rheumatoid arthritis is considered a chronic systemic autoimmune disorder that may cause joint destruction. Triptolide, an active component isolated from Tripterygium wilfordii Hook.f., is considered to have promising potential for clinical use in treating rheumatoid arthritis. However, its clinical application has been limited by the narrow therapeutic window, side effects associated with plasma drug fluctuations, low oral bioavailability, and poor patient compliance with the long and frequent dosing regimen. An extended drug release preparation may address these limitations. The aim of this work was therefore to develop, formulate and optimize sustained release triptolide microspheres with poly (lactide-co-glycolide) (PLGA). Triptolide-loaded microspheres were prepared using PLGA as the matrix polymer, dichloromethane as the oil phase, and polyvinyl alcohol (PVA) as the matrix forming emulsifier. An oil-in-water (O/W) emulsion solvent evaporation technique was utilized to prepare the microspheres. Surface response methodology (RSM) coupled with central composite design (CCD) was used to optimize the formulation and a total of twenty formulations were prepared. PVA concentration (X1), PLGA concentration (X2), and theoretical drug content (X3) were selected as independent variables; and drug content (Y1), encapsulation efficiency (Y2), mean diameter (Y3) and the initial release during the first day (Y4) were taken as the response variables. The optimized formulation showed mean diameter of 42.36 μm, drug content of 7.96%, encapsulation efficiency of 80.16% and an initial release of 14.48%. The prepared microspheres exhibited a sustained release profile of triptolide in vitro over 4 weeks, which was wellfitted with a Korsmeyer-Peppas equation. However, the initial drug release (~14%) of triptolide-loaded microspheres was very high and should be specifically investigated in future studies. The results indicate that long-term sustained release microspheres of triptolide can be considered a strategy to overcome the low bioavailability and poor patient compliance with conventional triptolide tablets. The issue of initial burst release and in vivo evaluations should be specifically investigated in the future.
Suggested Citation
Hui-lin Zeng & Qian Qiu & Ting-xiong Fu & Ai-ping Deng & Xiang-yang Xie, 2023.
"Development and optimization of sustained release triptolide microspheres,"
PLOS ONE, Public Library of Science, vol. 18(10), pages 1-20, October.
Handle:
RePEc:plo:pone00:0292861
DOI: 10.1371/journal.pone.0292861
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292861. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.