Author
Listed:
- Hari Prasad Gandikota
- Abirami S.
- Sunil Kumar M.
Abstract
Pancreatic cancer (PC) is a very lethal disease with a low survival rate, making timely and accurate diagnoses critical for successful treatment. PC classification in computed tomography (CT) scans is a vital task that aims to accurately discriminate between tumorous and non-tumorous pancreatic tissues. CT images provide detailed cross-sectional images of the pancreas, which allows oncologists and radiologists to analyse the characteristics and morphology of the tissue. Machine learning (ML) approaches, together with deep learning (DL) algorithms, are commonly explored to improve and automate the performance of PC classification in CT scans. DL algorithms, particularly convolutional neural networks (CNNs), are broadly utilized for medical image analysis tasks, involving segmentation and classification. This study explores the design of a tunicate swarm algorithm with deep learning-based pancreatic cancer segmentation and classification (TSADL-PCSC) technique on CT scans. The purpose of the TSADL-PCSC technique is to design an effectual and accurate model to improve the diagnostic performance of PC. To accomplish this, the TSADL-PCSC technique employs a W-Net segmentation approach to define the affected region on the CT scans. In addition, the TSADL-PCSC technique utilizes the GhostNet feature extractor to create a group of feature vectors. For PC classification, the deep echo state network (DESN) model is applied in this study. Finally, the hyperparameter tuning of the DESN approach occurs utilizing the TSA which assists in attaining improved classification performance. The experimental outcome of the TSADL-PCSC method was tested on a benchmark CT scan database. The obtained outcomes highlighted the significance of the TSADL-PCSC technique over other approaches to PC classification.
Suggested Citation
Hari Prasad Gandikota & Abirami S. & Sunil Kumar M., 2023.
"CT scan pancreatic cancer segmentation and classification using deep learning and the tunicate swarm algorithm,"
PLOS ONE, Public Library of Science, vol. 18(11), pages 1-16, November.
Handle:
RePEc:plo:pone00:0292785
DOI: 10.1371/journal.pone.0292785
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292785. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.