IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292622.html
   My bibliography  Save this article

Minimum chi-square method for estimating population size in capture-recapture experiments

Author

Listed:
  • Yuyan Zheng
  • Yongfei Mao
  • Min Tsao
  • Laura L E Cowen

Abstract

Closed population capture-recapture estimation of population size is difficult under heterogeneous capture probabilities. We introduce the minimum chi-square method which can handle multi-occasion capture-recapture data. It complements likelihood methods with elements that can lead to confidence intervals and assessment of goodness-of-fit. We conduct a comprehensive study on the minimum chi-square method for estimating the size of a closed population using multiple-occasion capture-recapture data under heterogeneous capture probability. We also develop two different bootstrap techniques that can be combined with any underlying estimator, be it the minimum chi-square estimator or a likelihood estimator, to perform useful inference for estimating population size. We present a simulation study on the minimum chi-square method and apply it to analyze white stork multiple capture-recapture data. Under certain conditions, the chi-square method outperforms the likelihood based methods.

Suggested Citation

  • Yuyan Zheng & Yongfei Mao & Min Tsao & Laura L E Cowen, 2023. "Minimum chi-square method for estimating population size in capture-recapture experiments," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0292622
    DOI: 10.1371/journal.pone.0292622
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292622
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292622&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shirley Pledger, 2000. "Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures," Biometrics, The International Biometric Society, vol. 56(2), pages 434-442, June.
    2. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    3. Huggins, Richard, 2001. "A note on the difficulties associated with the analysis of capture-recapture experiments with heterogeneous capture probabilities," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 147-152, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    2. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    3. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    4. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    5. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    6. Chang Xuan Mao & Robert K. Colwell & Jing Chang, 2005. "Estimating the Species Accumulation Curve Using Mixtures," Biometrics, The International Biometric Society, vol. 61(2), pages 433-441, June.
    7. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    8. Lisa Bellinghausen & Nicolas Vaillant, 2010. "Les déterminants du stress professionnel ressenti : une estimation par la méthode des équations d’estimation généralisées," Économie et Prévision, Programme National Persée, vol. 195(4), pages 67-82.
    9. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    10. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
    11. Murray G. Efford & Christine M. Hunter, 2018. "Spatial capture–mark–resight estimation of animal population density," Biometrics, The International Biometric Society, vol. 74(2), pages 411-420, June.
    12. George Seber & Carl Schwarz, 2002. "Capture-recapture: Before and after EURING 2000," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 5-18.
    13. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    14. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    15. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    16. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    17. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    18. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2003. "Open Capture-Recapture Models with Heterogeneity: I. Cormack-Jolly-Seber Model," Biometrics, The International Biometric Society, vol. 59(4), pages 786-794, December.
    19. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    20. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2021. "Joint Modeling of Distances and Times in Point-Count Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 289-305, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.