IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292597.html
   My bibliography  Save this article

CARRoT: R-package for predictive modelling by means of regression, adjusted for multiple regularisation methods

Author

Listed:
  • Alina Bazarova
  • Marko Raseta

Abstract

We present an R-package for predictive modelling, CARRoT (Cross-validation, Accuracy, Regression, Rule of Ten). CARRoT is a tool for initial exploratory analysis of the data, which performs exhaustive search for a regression model yielding the best predictive power with heuristic ‘rules of thumb’ and expert knowledge as regularization parameters. It uses multiple hold-outs in order to internally validate the model. The package allows to take into account multiple factors such as collinearity of the predictors, event per variable rules (EPVs) and R-squared statistics during the model selection. In addition, other constraints, such as forcing specific terms and restricting complexity of the predictive models can be used. The package allows taking pairwise and three-way interactions between variables into account as well. These candidate models are then ranked by predictive power, which is assessed via multiple hold-out procedures and can be parallelised in order to reduce the computational time. Models which exhibited the highest average predictive power over all hold-outs are returned. This is quantified as absolute and relative error in case of continuous outcomes, accuracy and AUROC values in case of categorical outcomes. In this paper we briefly present statistical framework of the package and discuss the complexity of the underlying algorithm. Moreover, using CARRoT and a number of datasets available in R we provide comparison of different model selection techniques: based on EPVs alone, on EPVs and R-squared statistics, on lasso regression, on including only statistically significant predictors and on stepwise forward selection technique.

Suggested Citation

  • Alina Bazarova & Marko Raseta, 2023. "CARRoT: R-package for predictive modelling by means of regression, adjusted for multiple regularisation methods," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0292597
    DOI: 10.1371/journal.pone.0292597
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292597
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292597&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silver, Steven D. & Raseta, Marko & Bazarova, Alina, 2023. "Stochastic resonance in the recovery of signal from agent price expectations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianjun & Xia, Lu, 2024. "Double well stochastic resonance for a class of three-dimensional financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. He, Lifang & Jiang, Zhiyuan & Chen, Yezi, 2024. "Unveiling the principles of stochastic resonance and complex potential functions for bearing fault diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.