Author
Listed:
- Hongqi Wang
- Dongwei Li
- Minghai Xia
- Xiufei Li
Abstract
Based on the influence of moisture content, dry density and temperature (≦ 0°C) on the thermal conductivity of lime-modified red clay, the thermal conductivity was measured by transient hot wire method. A total of 125 data were obtained and the evolution law of thermal conductivity with influencing factors was analyzed. The fitting formula of thermal conductivity of lime-modified red clay and a variety of intelligent prediction models were established and compared with previous empirical formulas. The results show that the thermal conductivity of lime-modified red clay increases linearly with water content and dry density. The change of thermal conductivity with temperature is divided into three stages. In the first stage, the thermal conductivity increases slowly with the decrease of temperature in the temperature range of-2°Cto 0°C. In the second stage, in the temperature range of-5°Cto (-2)°C, the thermal conductivity increases rapidly with the decrease of temperature. In the third stage, in the range of-10°Cto (-5)°C, the thermal conductivity changes little with the decrease of temperature, and the fitting curve tends to be stable. The fitting formula model and various intelligent prediction models can realize the accurate prediction of the thermal conductivity of lime-improved soil. Using RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) to evaluate the model, it is found that the GBDT decision tree model has the best prediction effect, the RMSE value of the predicted value is 0.084, and the MAPE value is 4.1%. The previous empirical models have poor prediction effect on the thermal conductivity of improved red clay. The intelligent prediction models such as GBDT decision tree with strong universality and high prediction accuracy are recommended to predict the thermal conductivity of soil.
Suggested Citation
Hongqi Wang & Dongwei Li & Minghai Xia & Xiufei Li, 2023.
"Study on thermal conductivity of improved soil under different freezing temperatures,"
PLOS ONE, Public Library of Science, vol. 18(10), pages 1-18, October.
Handle:
RePEc:plo:pone00:0292560
DOI: 10.1371/journal.pone.0292560
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.