Author
Listed:
- Mahwish Ilyas
- Khalid Mahmood Aamir
- Sana Manzoor
- Mohamed Deriche
Abstract
Cancer is a serious public health concern worldwide and is the leading cause of death. Blood cancer is one of the most dangerous types of cancer. Leukemia is a type of cancer that affects the blood cell and bone marrow. Acute leukemia is a chronic condition that is fatal if left untreated. A timely, reliable, and accurate diagnosis of leukemia at an early stage is critical to treating and preserving patients’ lives. There are four types of leukemia, namely acute lymphocytic leukemia, acute myelogenous leukemia, chronic lymphocytic in extracting, and chronic myelogenous leukemia. Recognizing these cancerous development cells is often done via manual analysis of microscopic images. This requires an extraordinarily skilled pathologist. Leukemia symptoms might include lethargy, a lack of energy, a pale complexion, recurrent infections, and easy bleeding or bruising. One of the challenges in this area is identifying subtypes of leukemia for specialized treatment. This Study is carried out to increase the precision of diagnosis to assist in the development of personalized plans for treatment, and improve general leukemia-related healthcare practises. In this research, we used leukemia gene expression data from Curated Microarray Database (CuMiDa). Microarrays are ideal for studying cancer, however, categorizing the expression pattern of microarray information can be challenging. This proposed study uses feature selection methods and machine learning techniques to predict and classify subtypes of leukemia in gene expression data CuMiDa (GSE9476). This research work utilized linear programming (LP) as a machine-learning technique for classification. Linear programming model classifies and predicts the subtypes of leukemia Bone_Marrow_CD34, Bone Marrow, AML, PB, and PBSC CD34. Before using the LP model, we selected 25 features from the given dataset of 22283 features. These 25 significant features were the most distinguishing for classification. The classification accuracy of this work is 98.44%.
Suggested Citation
Mahwish Ilyas & Khalid Mahmood Aamir & Sana Manzoor & Mohamed Deriche, 2023.
"Linear programming based computational technique for leukemia classification using gene expression profile,"
PLOS ONE, Public Library of Science, vol. 18(10), pages 1-21, October.
Handle:
RePEc:plo:pone00:0292172
DOI: 10.1371/journal.pone.0292172
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.