IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292059.html
   My bibliography  Save this article

Individual differences of limitation to extract beat from Kuramoto coupled oscillators: Transition from beat-based tapping to frequent tapping with weaker coupling

Author

Listed:
  • Nolan Lem
  • Takako Fujioka

Abstract

Musical performers synchronize to each other despite differences in sound-onset timings which reflect each musician’s sense of the beat. A dynamical system of Kuramoto oscillators can simulate this spread of onsets at varying levels of temporal alignment with a variety of tempo and sound densities which also influence individual abilities for beat extraction. Here, we examined how people’s sense of beat emerges when tapping with Kuramoto oscillators of varying coupling strengths which distribute onsets around periodic moments in time. We hypothesized that people tap regularly close to the sound onset density peaks when coupling is strong. When weaker coupling produces multiple inter-onset intervals that are more widely spread, people may interpret their variety and distributions differently in order to form a sense of beat. Experiment 1 with a small in-person cohort indeed showed a few individuals who responded with high frequency tapping to slightly weak coupled stimuli although the rest found regular beats. Experiment 2 with a larger on-line cohort revealed three groups based on characteristics of inter-tap-intervals analyzed by k-means clustering, namely a Regular group (about 1/3 of the final sample) with the most robust beat extraction, Fast group (1/6) who maintained frequent tapping except for the strongest coupling, and Hybrid group (1/2) who maintained beats except for the weakest coupling. Furthermore, the adaptation time course of tap interval variability was slowest in Regular group. We suggest that people’s internal criterion for forming beats may involve different perceptual timescales where multiple stimulus intervals could be integrated or processed sequentially as is, and that the highly frequent tapping may reflect their approach in actively seeking synchronization. Our study provides the first documentation of the novel limits of sensorimotor synchronization and individual differences using coupled oscillator dynamics as a generative model of collective behavior.

Suggested Citation

  • Nolan Lem & Takako Fujioka, 2023. "Individual differences of limitation to extract beat from Kuramoto coupled oscillators: Transition from beat-based tapping to frequent tapping with weaker coupling," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-29, October.
  • Handle: RePEc:plo:pone00:0292059
    DOI: 10.1371/journal.pone.0292059
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292059
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292059&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.