IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291711.html
   My bibliography  Save this article

Prediction of respiratory failure risk in patients with pneumonia in the ICU using ensemble learning models

Author

Listed:
  • Guanqi Lyu
  • Masaharu Nakayama

Abstract

The aim of this study was to develop early prediction models for respiratory failure risk in patients with severe pneumonia using four ensemble learning algorithms: LightGBM, XGBoost, CatBoost, and random forest, and to compare the predictive performance of each model. In this study, we used the eICU Collaborative Research Database (eICU-CRD) for sample extraction, built a respiratory failure risk prediction model for patients with severe pneumonia based on four ensemble learning algorithms, and developed compact models corresponding to the four complete models to improve clinical practicality. The average area under receiver operating curve (AUROC) of the models on the test sets after ten random divisions of the dataset and the average accuracy at the best threshold were used as the evaluation metrics of the model performance. Finally, feature importance and Shapley additive explanation values were introduced to improve the interpretability of the model. A total of 1676 patients with pneumonia were analyzed in this study, of whom 297 developed respiratory failure one hour after admission to the intensive care unit (ICU). Both complete and compact CatBoost models had the highest average AUROC (0.858 and 0.857, respectively). The average accuracies at the best threshold were 75.19% and 77.33%, respectively. According to the feature importance bars and summary plot of the predictor variables, activetx (indicates whether the patient received active treatment), standard deviation of prothrombin time-international normalized ratio, Glasgow Coma Scale verbal score, age, and minimum oxygen saturation and respiratory rate were important. Compared with other ensemble learning models, the complete and compact CatBoost models have significantly higher average area under the curve values on the 10 randomly divided test sets. Additionally, the standard deviation (SD) of the compact CatBoost model is relatively small (SD:0.050), indicating that the performance of the compact CatBoost model is stable among these four ensemble learning models. The machine learning predictive models built in this study will help in early prediction and intervention of respiratory failure risk in patients with pneumonia in the ICU.

Suggested Citation

  • Guanqi Lyu & Masaharu Nakayama, 2023. "Prediction of respiratory failure risk in patients with pneumonia in the ICU using ensemble learning models," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0291711
    DOI: 10.1371/journal.pone.0291711
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291711
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291711&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.