Author
Listed:
- Afifa Salsabil Fathima
- Syed Muzamil Basha
- Syed Thouheed Ahmed
- Sandeep Kumar Mathivanan
- Sukumar Rajendran
- Saurav Mallik
- Zhongming Zhao
Abstract
Medical data processing and analytics exert significant influence in furnishing dependable decision support for prospective biomedical applications. Given the sensitive nature of medical data, specialized techniques and frameworks tailored for application-centric processing are imperative. This article presents a conceptualization for the analysis and uniformitarian of datasets through the implementation of Federated Learning (FL). The realm of medical big data stems from diverse origins, necessitating the delineation of data provenance and attribute paradigms to facilitate feature extraction and dependency assessment. The architecture governing the data collection framework is intricately linked to remote data transmission, thereby engendering efficient customization oversight. The operational methodology unfolds across four strata: the data origin layer, data acquisition layer, data classification layer, and data optimization layer. Central to this endeavor are multi-objective optimal datasets (MooM), characterized by attribute-driven feature cartography and cluster categorization through the conduit of federated learning models. The orchestration of feature synchronization and parameter extraction transpires across multiple tiers of neural networking, culminating in the provisioning of a steadfast remedy through dataset standardization and labeling. The empirical findings reflect the efficacy of the proposed technique, boasting an impressive 97.34% accuracy rate in the disentanglement and clustering of telemedicine data, facilitated by the operational servers within the ambit of the federated model.
Suggested Citation
Afifa Salsabil Fathima & Syed Muzamil Basha & Syed Thouheed Ahmed & Sandeep Kumar Mathivanan & Sukumar Rajendran & Saurav Mallik & Zhongming Zhao, 2023.
"Federated learning based futuristic biomedical big-data analysis and standardization,"
PLOS ONE, Public Library of Science, vol. 18(10), pages 1-16, October.
Handle:
RePEc:plo:pone00:0291631
DOI: 10.1371/journal.pone.0291631
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291631. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.