IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291458.html
   My bibliography  Save this article

Influence of femoral anteversion angle and neck-shaft angle on muscle forces and joint loading during walking

Author

Listed:
  • Hans Kainz
  • Gabriel T Mindler
  • Andreas Kranzl

Abstract

Femoral deformities, e.g. increased or decreased femoral anteversion (AVA) and neck-shaft angle (NSA), can lead to pathological gait patterns, altered joint loads, and degenerative joint diseases. The mechanism how femoral geometry influences muscle forces and joint load during walking is still not fully understood. The objective of our study was to investigate the influence of femoral AVA and NSA on muscle forces and joint loads during walking. We conducted a comprehensive musculoskeletal modelling study based on three-dimensional motion capture data of a healthy person with a typical gait pattern. We created 25 musculoskeletal models with a variety of NSA (93°-153°) and AVA (-12°-48°). For each model we calculated moment arms, muscle forces, muscle moments, co-contraction indices and joint loads using OpenSim. Multiple regression analyses were used to predict muscle activations, muscle moments, co-contraction indices, and joint contact forces based on the femoral geometry. We found a significant increase in co-contraction of hip and knee joint spanning muscles in models with increasing AVA and NSA, which led to a substantial increase in hip and knee joint contact forces. Decreased AVA and NSA had a minor impact on muscle and joint contact forces. Large AVA lead to increases in both knee and hip contact forces. Large NSA (153°) combined with large AVA (48°) led to increases in hip joint contact forces by five times body weight. Low NSA (108° and 93°) combined with large AVA (48°) led to two-fold increases in the second peak of the knee contact forces. Increased joint contact forces in models with increased AVA and NSA were linked to changes in hip muscle moment arms and compensatory increases in hip and knee muscle forces. Knowing the influence of femoral geometry on muscle forces and joint loads can help clinicians to improve treatment strategies in patients with femoral deformities.

Suggested Citation

  • Hans Kainz & Gabriel T Mindler & Andreas Kranzl, 2023. "Influence of femoral anteversion angle and neck-shaft angle on muscle forces and joint loading during walking," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-23, October.
  • Handle: RePEc:plo:pone00:0291458
    DOI: 10.1371/journal.pone.0291458
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291458
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291458&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.