IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291077.html
   My bibliography  Save this article

UAV aided virtual cooperative spectrum sensing for cognitive radio networks

Author

Listed:
  • Noor Gul
  • Su Min Kim
  • Jehad Ali
  • Junsu Kim

Abstract

Cooperative spectrum sensing (CSS) involves multiple secondary users (SUs) reporting primary user (PU) channel sensing states to the fusion center (FC). However, the high overheads associated with multi-user CSS impose power limitations that limit its usefulness in unmanned aerial vehicle (UAV) networks. To address this challenge, we propose a virtual CSS, where a single UAV conducts CSS while following a circular flight trajectory in the air. The novelty of our approach is presenting a working frame structure for the UAV flight, including sensing and data transmission periods with further division of the sensing time into mini-sensing slots. In the virtual CSS, UAV performs local sensing decisions in each mini-slot and accumulates them for a final decision. The proposed virtual CSS scheme exploits sequential decision fusion (SDF), which sequentially adds individual mini-slot decisions. Additionally, we leverage machine learning (ML), employing AdaBoost ensembling classifier (ENC), to inspect flight conditions and reconfigure mini-slot periods dynamically for both traditional decision fusion (TDF) and our proposed SDF schemes. Furthermore, we identify an optimal decision threshold (ODT) for the proposed SDF, enabling the comparison of sequential results with an adjustable threshold through majority voting. This novel approach results in energy efficiency and improved throughput for virtual CSS using SDF, surpassing the performance of TDF, which relies on collecting entire mini-slot reports for its final decision. Simulation results demonstrate the effectiveness of the proposed SDF following the ENCODT (SDF-ENCODT) scheme compared to existing techniques from the literature. We explore varying levels of UAV flight velocities, moving radius, detection probability demand, and channel signal-to-noise ratio (SNR), reinforcing the significance of our contribution. Our research highlights the motivation to address spectrum scarcity in UAV communication by proposing an innovative virtual CSS scheme based on SDF. The proposed approach enhances spectrum utilization, overcomes power limitations, and substantially improves CSS for UAV networks.

Suggested Citation

  • Noor Gul & Su Min Kim & Jehad Ali & Junsu Kim, 2023. "UAV aided virtual cooperative spectrum sensing for cognitive radio networks," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-36, September.
  • Handle: RePEc:plo:pone00:0291077
    DOI: 10.1371/journal.pone.0291077
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291077
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291077&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.