IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290719.html
   My bibliography  Save this article

Integrative soft computing approaches for optimizing thermal energy performance in residential buildings

Author

Listed:
  • Yao Peng
  • Yang Chen

Abstract

As is known, early prediction of thermal load in buildings can give valuable insight to engineers and energy experts in order to optimize the building design. Although different machine learning models have been promisingly employed for this problem, newer sophisticated techniques still require proper attention. This study aims at introducing novel hybrid algorithms for estimating building thermal load. The predictive models are artificial neural networks exposed to five optimizer algorithms, namely Archimedes optimization algorithm (AOA), Beluga whale optimization (BWO), forensic-based investigation (FBI), snake optimizer (SO), and transient search algorithm (TSO), for attaining optimal trainings. These five integrations aim at predicting the annual thermal energy demand. The accuracy of the models is broadly assessed using mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of determination (R2) indicators and a ranking system is accordingly developed. As the MAPE and R2 reported, all obtained relative errors were below 5% and correlations were above 92% which confirm the general acceptability of the results and all used models. While the models exhibited different performances in training and testing stages, referring to the overall results, the BWO emerged as the most accurate algorithm, followed by the AOA and SO simultaneously in the second position, the FBI as the third, and TSO as the fourth accurate model. Mean absolute error (MAPE) and Considering the wide variety of artificial intelligence techniques that are used nowadays, the findings of this research may shed light on the selection of proper techniques for reliable energy performance analysis in complex buildings.

Suggested Citation

  • Yao Peng & Yang Chen, 2023. "Integrative soft computing approaches for optimizing thermal energy performance in residential buildings," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0290719
    DOI: 10.1371/journal.pone.0290719
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290719
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290719&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.