IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290530.html
   My bibliography  Save this article

Causal relationship between body mass index, type 2 diabetes and bone mineral density: Mendelian randomization

Author

Listed:
  • Weiwei Ma
  • Xiaohong Zhou
  • Xin Huang
  • Yong Xiong

Abstract

Objective: To reveal the relationship between Body Mass Index(BMI), type 2 diabetes, and bone mineral density(BMD) using a mendelian randomization (MR) approach. Methods: GWAS data on BMI, type 2 diabetes, and BMD were selected from the IEU GWAS database at the University of Bristol.Univariable, multivariable, and mediated MR analyses were used to explore the relationship between BMI, type 2 diabetes, and BMD. beta(β) values were given, and three methods, including inverse variance weighting, MR-Egger regression, and weighted median, were used in this analysis. Results: Univariable mendelian randomization (UVMR) results showed that BMI and type 2 diabetes were positively associated with BMD. However, the association between BMI and BMD was insignificant in the multivariable Mendelian randomization (MVMR) analysis, while that between type 2 diabetes and BMD remained significant. Mediated MR analysis indicated that type 2 diabetes mediated the regulation of BMD by BMI. Conclusion: This study provides evidence supporting a positive causal association between BMI, type 2 diabetes, and BMD. Type 2 diabetes acts as a mediator in the regulation of BMD by BMI, indicating that both BMI and type 2 diabetes exert a protective influence on BMD.

Suggested Citation

  • Weiwei Ma & Xiaohong Zhou & Xin Huang & Yong Xiong, 2023. "Causal relationship between body mass index, type 2 diabetes and bone mineral density: Mendelian randomization," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-13, October.
  • Handle: RePEc:plo:pone00:0290530
    DOI: 10.1371/journal.pone.0290530
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290530
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290530&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angli Xue & Yang Wu & Zhihong Zhu & Futao Zhang & Kathryn E. Kemper & Zhili Zheng & Loic Yengo & Luke R. Lloyd-Jones & Julia Sidorenko & Yeda Wu & Allan F. McRae & Peter M. Visscher & Jian Zeng & Jian, 2018. "Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxiang Wu & Weiwei Ma & Zhenda Cheng & Qiwei Zhang & Zhaodong Li & Punan Weng & Bushuang Li & Zhiqiang Huang & Changlong Fu, 2024. "Causal relationships between body mass index, low-density lipoprotein and bone mineral density: Univariable and multivariable Mendelian randomization," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Danielle Rasooly & Gina M. Peloso & Alexandre C. Pereira & Hesam Dashti & Claudia Giambartolomei & Eleanor Wheeler & Nay Aung & Brian R. Ferolito & Maik Pietzner & Eric H. Farber-Eger & Quinn Stanton , 2023. "Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yu Huang & Denis Plotnikov & Huan Wang & Danli Shi & Cong Li & Xueli Zhang & Xiayin Zhang & Shulin Tang & Xianwen Shang & Yijun Hu & Honghua Yu & Hongyang Zhang & Jeremy A. Guggenheim & Mingguang He, 2024. "GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Amil M. Shah & Peder L. Myhre & Victoria Arthur & Pranav Dorbala & Humaira Rasheed & Leo F. Buckley & Brian Claggett & Guning Liu & Jianzhong Ma & Ngoc Quynh Nguyen & Kunihiro Matsushita & Chiadi Ndum, 2024. "Large scale plasma proteomics identifies novel proteins and protein networks associated with heart failure development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Nehaben A. Gujarati & Bismark O. Frimpong & Malaika Zaidi & Robert Bronstein & Monica P. Revelo & John D. Haley & Igor Kravets & Yiqing Guo & Sandeep K. Mallipattu, 2024. "Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Magdalena Sevilla-González & Kirk Smith & Ningyuan Wang & Aubrey E. Jensen & Elizabeth M. Litkowski & Hyunkyung Kim & Daniel A. DiCorpo & Sarah Hsu & Jinrui Cui & Ching-Ti Liu & Chenglong Yu & John J., 2025. "Heterogeneous effects of genetic variants and traits associated with fasting insulin on cardiometabolic outcomes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Tyler A. U. Hilsabeck & Vikram P. Narayan & Kenneth A. Wilson & Enrique M. Carrera & Daniel Raftery & Daniel Promislow & Rachel B. Brem & Judith Campisi & Pankaj Kapahi, 2024. "Systems biology approaches identify metabolic signatures of dietary lifespan and healthspan across species," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Gianluca Ursini & Pasquale Di Carlo & Sreya Mukherjee & Qiang Chen & Shizhong Han & Jiyoung Kim & Maya Deyssenroth & Carmen J. Marsit & Jia Chen & Ke Hao & Giovanna Punzi & Daniel R. Weinberger, 2023. "Prioritization of potential causative genes for schizophrenia in placenta," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Qing Cheng & Xiao Zhang & Lin S. Chen & Jin Liu, 2022. "Mendelian randomization accounting for complex correlated horizontal pleiotropy while elucidating shared genetic etiology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Yi-Jia Huang & Chun-houh Chen & Hsin-Chou Yang, 2024. "AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Daniel McGuire & Havell Markus & Lina Yang & Jingyu Xu & Austin Montgomery & Arthur Berg & Qunhua Li & Laura Carrel & Dajiang J. Liu & Bibo Jiang, 2024. "Dissecting heritability, environmental risk, and air pollution causal effects using > 50 million individuals in MarketScan," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Fengzhe Xu & Evan Yi-Wen Yu & Xue Cai & Liang Yue & Li-peng Jing & Xinxiu Liang & Yuanqing Fu & Zelei Miao & Min Yang & Menglei Shuai & Wanglong Gou & Congmei Xiao & Zhangzhi Xue & Yuting Xie & Sainan, 2023. "Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Léon Gurp & Leon Fodoulian & Daniel Oropeza & Kenichiro Furuyama & Eva Bru-Tari & Anh Nguyet Vu & John S. Kaddis & Iván Rodríguez & Fabrizio Thorel & Pedro L. Herrera, 2022. "Generation of human islet cell type-specific identity genesets," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.