IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0289129.html
   My bibliography  Save this article

Residual current detection method based on improved VMD-BPNN

Author

Listed:
  • Yunpeng Bai
  • Xiangke Zhang
  • Yajing Wang
  • Lei Wang
  • Qinqin Wei
  • Wenlei Zhao

Abstract

To further enhance the residual current detection capability of low-voltage distribution networks, an improved adaptive residual current detection method that combines variational modal decomposition (VMD) and BP neural network (BPNN) is proposed. Firstly, the method employs the envelope entropy as the adaptability function, optimizes the [k, ɑ] combination value of the VMD decomposition using the bacterial foraging-particle swarm algorithm (BFO-PSO), and utilizes the interrelation number R as the classification index with the Least Mean Square Algorithm (LMS) to classify, filter, and extract the effective signal from the decomposed signal. Then, the extracted signals are detected by BPNN, and the training data are utilized to predict the residual current signals. Simulation and experimental data demonstrate that the proposed algorithm exhibits strong robustness and high detection accuracy. With an ambient noise of 10dB, the signal-to-noise ratio is 16.3108dB, the RMSE is 0.4359, and the goodness-of-fit is 0.9627 after processing by the algorithm presented in this paper, which are superior to the Variational Modal Decomposition-Long Short-Term Memory (VMD-LSTM) and Normalized-Least Mean Square (N-LMS) detection methods. The results were also statistically analyzed in conjunction with the Kolmogorov-Smirnov test, which demonstrated significance at the experimental data level, indicating the high accuracy of the algorithms presented in this paper and providing a certain reference for new residual current protection devices for biological body electrocution.

Suggested Citation

  • Yunpeng Bai & Xiangke Zhang & Yajing Wang & Lei Wang & Qinqin Wei & Wenlei Zhao, 2024. "Residual current detection method based on improved VMD-BPNN," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-22, February.
  • Handle: RePEc:plo:pone00:0289129
    DOI: 10.1371/journal.pone.0289129
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289129
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0289129&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0289129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nebojsa Bacanin & Catalin Stoean & Miodrag Zivkovic & Miomir Rakic & Roma Strulak-Wójcikiewicz & Ruxandra Stoean, 2023. "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, MDPI, vol. 16(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Saini & Ashish Kumar & Dinesh Kumar Saini & Punit Gupta, 2023. "Availability optimization of power generating units used in sewage treatment plants using metaheuristic techniques," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-22, May.
    2. Luis Alberto Holgado-Apaza & Nelly Jacqueline Ulloa-Gallardo & Ruth Nataly Aragon-Navarrete & Raidith Riva-Ruiz & Naomi Karina Odagawa-Aragon & Danger David Castellon-Apaza & Edgar E. Carpio-Vargas & , 2024. "The Exploration of Predictors for Peruvian Teachers’ Life Satisfaction through an Ensemble of Feature Selection Methods and Machine Learning," Sustainability, MDPI, vol. 16(17), pages 1-28, August.
    3. Qi Zhang & Weijia Yang & Anping Zhao & Xiaodong Wang & Zengfei Wang & Lin Zhang, 2024. "Short-term forecasting of vegetable prices based on LSTM model—Evidence from Beijing’s vegetable data," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-33, July.
    4. Olympia Roeva & Gergana Roeva & Elena Chorukova, 2024. "Crow Search Algorithm for Modelling an Anaerobic Digestion Process: Algorithm Parameter Influence," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
    5. Beibei Hu & Yunhe Cheng, 2023. "Predicting regional carbon price in China based on multi-factor HKELM by combining secondary decomposition and ensemble learning," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-24, December.
    6. Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.