Author
Listed:
- Jungbin Lee
- Sung-Tae Park
- Sun-Chul Hwang
- Jung Youn Kim
- A Leum Lee
- Kee-Hyun Chang
Abstract
Objective: The angiographic spot sign (AS) on CT angiography (CTA) is known to be useful for predicting expansion in intracranial hemorrhage, but its use is limited due to its relatively low sensitivity. Recently, dual-energy computed tomography (DECT) has been shown to be superior in distinguishing between hemorrhage and iodine. This study aimed to evaluate the diagnostic performance of hematoma expansion (HE) using DECT AS in traumatic intracranial hemorrhage. Methods: We recruited participants with intracranial hemorrhage confirmed via CTA for suspected traumatic cerebrovascular injuries. We evaluated AS on both conventional-like and fusion images of DECT. AS is grouped into three categories: intralesional enhancement without change, delayed enhancement (DE), and growing contrast leakage (GL). HE was evaluated by measuring hematoma size on DECT and follow-up CT. Logistic regression analysis was used to evaluate whether AS on fusion images was a significant risk factor for HE. Diagnostic accuracy was calculated, and the results from conventional-like and fusion images were compared. Results: Thirty-nine hematomas in 24 patients were included in this study. Of these, 18 hematomas in 13 patients showed expansion on follow-up CT. Among the expanders, AS and GL on fusion images were noted in 13 and 5 hematomas, respectively. In non-expanders, 10 and 1 hematoma showed AS and GL, respectively. In the logistic regression model, GL on the fusion image was a significant independent risk factor for predicting HE. However, when AS was used on conventional-like images, no factors significantly predicted HE. In the receiver operating characteristic curve analysis, the area under the curve of AS on the fusion images was 0.71, with a sensitivity and specificity of 66.7% and 76.2%, respectively. Conclusions: GL on fusion images of DECT in traumatic intracranial hemorrhage is a significant independent radiologic risk factor for predicting HE. The AS of DECT fusion images has improved sensitivity compared to that of conventional-like images.
Suggested Citation
Jungbin Lee & Sung-Tae Park & Sun-Chul Hwang & Jung Youn Kim & A Leum Lee & Kee-Hyun Chang, 2023.
"Dual-energy computed tomography material decomposition improves prediction accuracy of hematoma expansion in traumatic intracranial hemorrhage,"
PLOS ONE, Public Library of Science, vol. 18(7), pages 1-13, July.
Handle:
RePEc:plo:pone00:0289110
DOI: 10.1371/journal.pone.0289110
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.