Author
Listed:
- Hyunsoo Yoon
- Todd J Schwedt
- Catherine D Chong
- Oyekanmi Olatunde
- Teresa Wu
Abstract
Multicenter and multi-scanner imaging studies may be necessary to ensure sufficiently large sample sizes for developing accurate predictive models. However, multicenter studies, incorporating varying research participant characteristics, MRI scanners, and imaging acquisition protocols, may introduce confounding factors, potentially hindering the creation of generalizable machine learning models. Models developed using one dataset may not readily apply to another, emphasizing the importance of classification model generalizability in multi-scanner and multicenter studies for producing reproducible results. This study focuses on enhancing generalizability in classifying individual migraine patients and healthy controls using brain MRI data through a data harmonization strategy. We propose identifying a ’healthy core’—a group of homogeneous healthy controls with similar characteristics—from multicenter studies. The Maximum Mean Discrepancy (MMD) in Geodesic Flow Kernel (GFK) space is employed to compare two datasets, capturing data variabilities and facilitating the identification of this ‘healthy core’. Homogeneous healthy controls play a vital role in mitigating unwanted heterogeneity, enabling the development of highly accurate classification models with improved performance on new datasets. Extensive experimental results underscore the benefits of leveraging a ’healthy core’. We utilized two datasets: one comprising 120 individuals (66 with migraine and 54 healthy controls), and another comprising 76 individuals (34 with migraine and 42 healthy controls). Notably, a homogeneous dataset derived from a cohort of healthy controls yielded a significant 25% accuracy improvement for both episodic and chronic migraineurs.
Suggested Citation
Hyunsoo Yoon & Todd J Schwedt & Catherine D Chong & Oyekanmi Olatunde & Teresa Wu, 2024.
"Healthy core: Harmonizing brain MRI for supporting multicenter migraine classification studies,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-17, December.
Handle:
RePEc:plo:pone00:0288300
DOI: 10.1371/journal.pone.0288300
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0288300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.