IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287791.html
   My bibliography  Save this article

A task level fusion autonomous switching mechanism

Author

Listed:
  • Bingyu Lv
  • Xianchang Wang
  • Rui Zhang

Abstract

Positioning technology is an important component of environmental perception. It is also the basis for autonomous decision-making and motion control of firefighting robots. However, some issues such as positioning in indoor scenarios still remain inherent challenges. The positioning accuracy of the fire emergency reaction dispatching (FERD) system is far from adequate to support some applications for firefighting and rescue in indoor scenarios with multiple obstacles. To solve this problem, this paper proposes a fusion module based on the Blackboard architecture. This module aims to improve the positioning accuracy of a single sensor of the unmanned vehicles within the FERD system. To reduce the risk of autonomous decision-making of the unmanned vehicles, this module uses a comprehensive manner of multiple channels to complement or correct the positioning of the firefighting robots. Specifically, this module has been developed to fusion a variety of relevant processes for precise positioning. This process mainly includes six strategies. These strategies are the denoising, spatial alignment, confidence degree update, observation filtering, data fusion, and fusion decision. These strategies merge with the current scenarios-related parameter data, empirical data on sensor errors, and information to form a series of norms. This paper then proceeds to gain experience data with the confidence degree, error of different sensors, and timeliness of this module by training in an indoor scenario with multiple obstacles. This process is from data of multiple sensors (bottom-level) to control decisions knowledge-based (up-level). This process can obtain globally optimal positioning results. Finally, this paper evaluates the performance of this fusion module for the FERD system. The experimental results show that this fusion module can effectively improve positioning accuracy in an indoor scenario with multiple obstacles. Code is available at https://github.com/lvbingyu-zeze/gopath/tree/master.

Suggested Citation

  • Bingyu Lv & Xianchang Wang & Rui Zhang, 2023. "A task level fusion autonomous switching mechanism," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-32, November.
  • Handle: RePEc:plo:pone00:0287791
    DOI: 10.1371/journal.pone.0287791
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287791
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287791&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.