IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0286825.html
   My bibliography  Save this article

Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands

Author

Listed:
  • Ming-Song Zhao
  • Tao Wang
  • Yuanyuan Lu
  • Shihang Wang
  • Yunjin Wu

Abstract

Soil organic matter (SOM) is a key index of soil fertility. Calculating spectral index and screening characteristic band reduce redundancy information of hyperspectral data, and improve the accuracy of SOM prediction. This study aimed to compare the improvement of model accuracy by spectral index and characteristic band. This study collected 178 samples of topsoil (0–20 cm) in the central plain of Jiangsu, East China. Firstly, visible and near-infrared (VNIR, 350–2500 nm) reflectance spectra were measured using ASD FieldSpec 4 Std-Res spectral radiometer in the laboratory, and inverse-log reflectance (LR), continuum removal (CR), first-order derivative reflectance (FDR) were applied to transform the original reflectance (R). Secondly, optimal spectral indexes (including deviation of arch, difference index, ratio index, and normalized difference index) were calculated from each type of VNIR spectra. Characteristic bands were selected from each type of spectra by the competitive adaptive reweighted sampling (CARS) algorithm, respectively. Thirdly, SOM prediction models were established based on random forest (RF), support vector regression (SVR), deep neural networks (DNN) and partial least squares regression (PLSR) methods using optimal spectral indexes, denoted here as SI-based models. Meanwhile, SOM prediction models were established using characteristic wavelengths, denoted here as CARS-based models. Finally, this research compared and assessed accuracy of SI-based models and CARS-based models, and selected optimal model. Results showed: (1) The correlation between optimal spectral indexes and SOM was enhanced, with absolute value of correlation coefficient between 0.66 and 0.83. The SI-based models predicted SOM content accurately, with the coefficient of determination (R2) and root mean square error (RMSE) values ranging from 0.80 to 0.87, 2.40 g/kg to 2.88 g/kg in validation sets, and relative percent deviation (RPD) value between 2.14 and 2.52. (2) The accuracy of CARS-based models differed with models and spectral transformations. For all spectral transformations, PLSR and SVR combined with CARS displayed the best prediction (R2 and RMSE values ranged from 0.87 to 0.92, 1.91 g/kg to 2.56 g/kg in validation sets, and RPD value ranged from 2.41 to 3.23). For FDR and CR spectra, DNN and RF models achieved more accuracy (R2 and RMSE values ranged from 0.69 to 0.91, 1.90 g/kg to 3.57 g/kg in validation sets, and RPD value ranged from 1.73 to 3.25) than LR and R spectra (R2 and RMSE values from 0.20 to 0.35, 5.08 g/kg to 6.44 g/kg in validation sets, and RPD value ranged from 0.96 to 1.21). (3) Overall, the accuracy of SI-based models was slightly lower than that of CARS-based models. But spectral index had a good adaptability to the models, and each SI-based model displayed the similar accuracy. For different spectra, the accuracy of CARS-based model differed from modeling methods. (4) The optimal CARS-based model was model CARS-CR-SVR (R2 and RMSE: 0.92 and 1.91 g/kg in validation set, RPD: 3.23). The optimal SI-based model was model SI3-SVR (R2 and RMSE: 0.87 and 2.40 g/kg in validation set, RPD: 2.57) and model SI-SVR (R2 and RMSE: 0.84 and 2.63 g/kg in validation set, RPD: 2.35).

Suggested Citation

  • Ming-Song Zhao & Tao Wang & Yuanyuan Lu & Shihang Wang & Yunjin Wu, 2023. "Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0286825
    DOI: 10.1371/journal.pone.0286825
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286825
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286825&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0286825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingsong Zhao & Yingfeng Gao & Yuanyuan Lu & Shihang Wang, 2022. "Hyperspectral Modeling of Soil Organic Matter Based on Characteristic Wavelength in East China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0286825. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.