Author
Listed:
- Maytham S Jabor
- Aqeel Salman Azez
- José Carlos Campelo
- Alberto Bonastre Pina
Abstract
Nowadays, Wireless Sensor Networks (WSNs) are widely used for collecting, communicating, and sharing information in various applications. Due to its limited resources in terms of computation, power, battery lifetime, and memory storage for sensor nodes, it is difficult to add confidentiality and integrity security features. It is worth noting that blockchain (BC) technology is one of the most promising technologies, because it provides security, avoids centralization, and a trusted third party. However, to apply BCs in WSNs is not an easy task because BC is typically resource-hungry for energy, computation, and memory. In this paper, the additional complication of adding BC in WSNs is compensated by an energy minimization strategy, which basically depends on minimizing the processing load of generating the blockchain hash value, and encrypting and compressing the data that travel from the cluster-heads to the base station to reduce the overall traffic, leading to reduced energy per node. A specific (dedicated) circuit is designed to implement the compression technique, generate the blockchain hash values and data encryption. The compression algorithm is based on chaotic theory. A comparison of the power consumed by a WSN using a blockchain implementation with and without the dedicated circuit, illustrates that the hardware design contributes considerably to reduce the consumption of power. When simulating both approaches, the energy consumed when replacing functions by hardware decreases up to 63%.
Suggested Citation
Maytham S Jabor & Aqeel Salman Azez & José Carlos Campelo & Alberto Bonastre Pina, 2023.
"New approach to improve power consumption associated with blockchain in WSNs,"
PLOS ONE, Public Library of Science, vol. 18(5), pages 1-35, May.
Handle:
RePEc:plo:pone00:0285924
DOI: 10.1371/journal.pone.0285924
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285924. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.