Author
Listed:
- Taiara Souza Costa
- Roberto Filgueiras
- Robson Argolo dos Santos
- Fernando França da Cunha
Abstract
The objectives of this study were to use machine learning algorithms to establish a model for estimating the evapotranspiration fraction (ETf) using two data input scenarios from the spectral information of the Sentinel-2 constellation, and to analyze the temporal and spatial applicability of the models to estimate the actual evapotranspiration (ETr) in agricultural crops irrigated by center pivots. The spectral bands of Sentinel 2A and 2B satellite and vegetation indices formed the first scenario. The second scenario was formed by performing the normalized ratio procedure between bands (NRPB) and joining the variables applied in the first scenario. The models were generated to predict the ETf using six regression algorithms and then compared with ETf calculated by the Simple Algorithm For Evapotranspiration Retrieving (SAFER) algorithm, was considered as the standard. The results possible to select the best model, which in both scenarios was Cubist. Subsequently, ETf was estimated only for the center pivots present in the study area and the classification of land use and cover was accessed through the MapBiomas product. Land use was necessary to enable the calculation of ETr in each scenario, in the center pivots with sugarcane and soybean crops. ETr was estimated using two ETo approaches (EToBrazil and Hargreaves-Samani). It was found that the Hargreaves-Samani equation overestimated ETr with higher errors mainly for center pivots with sugarcane, where systematic error (MBE) ranged from 0.89 to 2.02 mm d-1. The EToBrazil product, on the other hand, presented statistical errors with MBE values ranging from 0.00 to 1.26 mm d-1 for both agricultural crops. Based on the results obtained, it is observed that the ETr can be monitored spatially and temporally without the use of the thermal band, which causes the estimation of this parameter to be performed with greater temporal frequency.
Suggested Citation
Taiara Souza Costa & Roberto Filgueiras & Robson Argolo dos Santos & Fernando França da Cunha, 2023.
"Actual evapotranspiration by machine learning and remote sensing without the thermal spectrum,"
PLOS ONE, Public Library of Science, vol. 18(5), pages 1-21, May.
Handle:
RePEc:plo:pone00:0285535
DOI: 10.1371/journal.pone.0285535
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285535. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.