Author
Abstract
Virtual Reality (VR) technology uses computers to simulate the real world comprehensively. VR has been widely used in college teaching and has a huge application prospect. To better apply computer-aided instruction technology in music teaching, a music teaching system based on VR technology is proposed. First, a virtual piano is developed using the HTC Vive kit and the Leap Motion sensor fixed on the helmet as the hardware platform, and using Unity3D, related SteamVR plug-ins, and Leap Motion plug-ins as software platforms. Then, a gesture recognition algorithm is proposed and implemented. Specifically, the Dual Channel Convolutional Neural Network (DCCNN) is adopted to collect the user’s gesture command data. The dual-size convolution kernel is applied to extract the feature information in the image and the gesture command in the video, and then the DCCNN recognizes it. After the spatial and temporal information is extracted, Red-Green-Blue (RGB) color pattern images and optical flow images are input into the DCCNN. The prediction results are merged to obtain the final recognition result. The experimental results reveal that the recognition accuracy of DCCNN for the Curwen gesture is as high as 96%, and the recognition accuracy varies with different convolution kernels. By comparison, it is found that the recognition effect of DCCNN is affected by the size of the convolution kernel. Combining convolution kernels of size 5×5 and 7×7 can improve the recognition accuracy to 98%. The research results of this study can be used for music teaching piano and other VR products, with extensive popularization and application value.
Suggested Citation
Yan Feng, 2023.
"Design and research of music teaching system based on virtual reality system in the context of education informatization,"
PLOS ONE, Public Library of Science, vol. 18(10), pages 1-16, October.
Handle:
RePEc:plo:pone00:0285331
DOI: 10.1371/journal.pone.0285331
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285331. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.